摘要:视觉生成模型在根据文本提示创建逼真图像方面取得了显著进展,但在处理指定具有精确空间关系和属性的多个对象的复杂提示时仍存在困难。 有效处理此类提示需要对语义内容和空间布局进行明确的推理。 我们提出了GoT-R1,这是一个应用强化学习来增强视觉生成中的语义空间推理的框架。 基于生成思维链方法,GoT-R1使模型能够通过精心设计的强化学习,自主发现超出预定义模板的有效推理策略。 为了实现这一目标,我们提出了一个双阶段多维奖励框架,该框架利用MLLM来评估推理过程和最终输出,从而在整个生成管道中进行有效的监督。 奖励系统以统一的方法评估语义对齐、空间精度和视觉质量。 实验结果表明,在T2I-CompBench基准测试中,特别是在涉及精确空间关系和属性绑定的组合任务中,取得了显著改进。 GoT-R1通过成功地将复杂的推理能力转移到视觉生成领域,在图像生成方面取得了最新进展。 为了方便未来的研究,我们在Github。Huggingface链接:Paper page,论文链接:2505.17022
研究背景和目的
研究背景
近年来,视觉生成模型在根据文本描述创建多样化且逼真的图像方面取得了显著进展。然而,这些模型在处理包含多个对象及其精确空间关系和属性的复杂提示时仍面临挑战。传统的视觉生成方法往往依赖于从文本嵌入到视觉特征的直接映射,缺乏对场景组成结构的明确推理,导致在处理复杂提示时性能下降。
为了应对这一挑战,研究者们开始探索如何将推理能力融入视觉生成模型中。特别是,Generation Chain-of-Thought(GoT)框架的提出,通过引入中间语义空间推理过程,显著提高了复杂场景的组合保真度。然而,GoT的推理能力依赖于基于人类定义模板的监督微调,这限制了模型自主发现更有效推理策略的能力。
与此同时,强化学习(RL)在语言模型中展现出了显著增强链式思维推理能力的潜力。例如,OpenAI的o1和DeepSeek-R1等模型展示了语言模型如何通过自我改进发现复杂的推理策略。受此启发,本研究旨在探索如何将强化学习应用于视觉生成领域,以增强模型的语义空间推理能力。
研究目的
本研究的主要目的是提出GoT-R1框架,通过强化学习提升视觉生成模型在处理复杂文本提示时的语义空间推理能力。具体目标包括:
- 增强语义空间推理:利用强化学习使模型能够理解并规划包含多个对象及其精确空间关系和属性的复杂场景。
- 自主发现推理策略:超越预定义模板的限制,使模型能够自主探索和学习更有效的推理链。
- 综合多维度奖励系统:设计一种基于多模态大型语言模型(MLLM)的双阶段多维度奖励框架,以全面评估推理过程和最终视觉输出的质量。
- 提升生成图像质量:通过优化推理策略,生成与文本提示高度一致且视觉质量上乘的图像。
研究方法
GoT-R1框架设计
GoT-R1框架基于GoT方法构建,并引入强化学习来优化模型的语义空间推理能力。该框架包括以下几个关键组件:
- 基础模型:采用统一的多模态大型语言模型(如Janus-Pro),该模型能够自回归地生成文本推理链和图像标记。
- 强化学习过程:
- 采样:对于给定的提示,采样多个推理链和对应的图像。
- 评估:使用基于MLLM的奖励模型评估这些样本,评估指标包括语义对齐、空间准确性和视觉质量。
- 更新:利用组相对策略优化(GRPO)算法更新模型参数,以鼓励高奖励的推理和生成策略。
双阶段多维度奖励系统
为了全面监督整个生成过程,GoT-R1设计了一个双阶段多维度奖励系统,包括以下奖励:
- 提示到推理语义奖励(R_sem):评估推理链是否准确捕捉了提示中的所有语义元素,考虑完整性、忠实性、一致性和清晰度。
- 提示到推理空间奖励(R_spa):评估推理链中规划的空间布局与提示的符合程度。为了提高MLLM的空间评估能力,将文本坐标渲染为空白画布上的边界框进行视觉评估。
- 推理到图像奖励(R_RI):衡量生成的图像与规划推理的忠实度,通过计算规划边界框与图像中实际位置的交并比(IoU)来评估。
- 提示到图像奖励(R_PI):评估最终生成的图像与初始提示的整体质量和组合准确性。
总奖励R_total是这些个体奖励的乘积,确保了整体优化的全面性:R_total = R_PI * (R_sem + R_spa) * R_RI。
研究结果
定量评估
在T2I-CompBench基准测试上,GoT-R1模型展现出了显著的性能提升。与基线模型Janus-Pro和仅通过GoT微调的模型相比,GoT-R1在多个评估指标上均取得了更好的成绩。特别是在包含精确空间关系和属性绑定的组合任务中,GoT-R1的优势更为明显。例如,GoT-R1-7B模型在复杂基准测试中取得了最高分,显著优于其他模型。
定性评估
通过可视化比较,可以观察到GoT-R1生成的图像在提示对齐和图像质量方面均优于基线模型。GoT-R1能够更准确地反映提示中的复杂空间关系和属性绑定,生成更加逼真和细节丰富的图像。
奖励设计分析
通过消融研究,验证了GoT-R1中双阶段多维度奖励设计的有效性。单独使用任何一种奖励组件都无法达到最佳性能,而综合使用所有奖励组件则能显著提升模型的表现。此外,对R_PR(提示到推理奖励)的组成分析表明,语义奖励R_sem和空间奖励R_spa在提升属性绑定和空间一致性方面发挥了互补作用。
自我探索生成思维链分析
通过GPT-4o的投票结果比较,发现GoT-R1自我探索的生成思维链在相关性、对象描述和边界框准确性以及文本清晰度和流畅性方面均优于预定义的GoT。这表明GoT-R1能够自主发现和生成更优越的推理路径,从而增强其组合生成能力。
研究局限
尽管GoT-R1在视觉生成任务中取得了显著进展,但仍存在一些局限性:
- 计算成本:强化学习过程需要采样多个推理链和图像,并进行多次评估和更新,这增加了计算成本和时间开销。
- 奖励模型依赖:GoT-R1的性能高度依赖于基于MLLM的奖励模型的质量。如果奖励模型存在偏差或不足,可能会影响强化学习的效果。
- 泛化能力:尽管GoT-R1在T2I-CompBench基准测试上表现良好,但其泛化能力仍需在不同数据集和任务上进行进一步验证。
未来研究方向
针对GoT-R1的局限性和潜在发展方向,未来研究可以关注以下几个方面:
- 优化奖励模型:探索更先进的多模态大型语言模型作为奖励模型,提高评估的准确性和鲁棒性。同时,可以考虑引入对抗训练等方法来增强奖励模型的泛化能力。
- 降低计算成本:研究更高效的采样和评估策略,减少强化学习过程中的计算开销。例如,可以采用模型压缩、知识蒸馏等技术来加速训练过程。
- 增强泛化能力:在更多样化的数据集和任务上测试GoT-R1的性能,探索其在不同领域的应用潜力。同时,可以考虑引入迁移学习等方法来提高模型的泛化能力。
- 结合其他技术:将GoT-R1与其他先进的视觉生成技术相结合,如扩散模型、生成对抗网络等,以进一步提升生成图像的质量和多样性。
- 可解释性和可控性:研究如何提高GoT-R1生成过程的可解释性和可控性,使用户能够更好地理解和控制模型的输出。例如,可以引入用户反馈机制或条件生成策略来实现这一点。