Redis持久化
RDB持久化
全称Redis Database Backup file(Redis数据备份文件),也叫Redis数据快照。简单来说就是把内存中的所有数据记录在磁盘中。当Redis实例故障重启后,从磁盘读取快照文件,恢复数据。
快照文件成为RDB文件,默认是保存在当前运行目录。
触发命令:
save 由Redis主进程来执行RDB,会阻塞所有命令。
bgsave 开启子进程执行RDB,避免主进程收Redis到影响。(推荐)
Redis停机时会执行一次RDB。
redis.conf配置文件中
save 900 1 900秒内有一次修改则执行RDB
save 300 10 300秒内有10次修改则执行RDB
dir ./ 文件保存的目录
dbfilename dump.rdb RDB文件名
AOP持久化
全称为Append Only File(追加文件)。Redis处理的每一个写命令都会记录在AOF文件,可以看作时命令日志文件。
AOF默认时关闭的,需要修改redis.conf配置文件来开启AOF:
#是否开启AOF功能,默认是no
appendonly yes
#AOF文件名称
appendfilename “appendonly.aof”
AOF的命令记录频率也可以通过redis.conf文件配置:
#表示每执行一次写命令,立即记录到AOF文件
appendfsync always
#写命令执行完先放入AOF缓冲区,然后每隔1秒钟将缓冲区的数据写到AOF文件,是默认方案
appendfsync everysec
#写命令执行完先放入AOF缓冲区,由操作系统决定何时将缓冲区内容写回磁盘
配置项 | 刷盘时机 | 优点 | 缺点 |
---|---|---|---|
Always | 同步到盘 | 可靠性高,几乎不会丢数据 | 性能影响大 |
everysec | 每秒刷盘 | 性能适中 | 最多修饰1秒数据 |
no | 操作系统控制 | 性能最好 | 可靠性差,可能修饰大量数据 |
因为是记录命令,AOF文件会比RDB文件大的多。而且AOF会记录对同一个kev的多次写操作,但只有最后一次写操作才有意义。通过执行bgrewriteaof命令,可以让AOF文件执行重写功能,用最少的命令达到相同效果。
Redis也会在触发阈值时自动去重写AOF文件。值也可以在redis.conf中配置:
# AOF文件比上次文件 增长超过多少百分比则触发重写
auto-aof-rewrite-percentage 100
# AOF文件体积最小多大以上才触发重写
auto-aof-rewrite-min-size 64mb
RDB和AOF对比
RDB | AOF | |
---|---|---|
持久化方式 | 定时对整个内存做快照 | 记录每一此执行命令 |
数据完整性 | 不完整,两次备份之间故障数据会丢失 | 相对完整,取决于刷盘策略 |
文件大小 | 会有压缩,文件体积小 | 记录命令,文件体积很大 |
宕机恢复速度 | 很快 | 慢 |
数据恢复优先级 | 低,因为数据完整性不如AOF | 高,因为数据完整性更高 |
系统资源占用 | 高,大量CPU和内存消耗 |
低,主要是磁盘IO资源 但AOF重写会占用大量CPU和内存资源 |
使用场景 | 可以容忍数分钟的数据丢失,追求更快的启动速度 | 对数据安全性要求较高 |
主从架构
单节点的Redis的并发能力是由上限的,要进一步提高Redis的并发能力,就需要搭建主从集群,实现读写分离。
数据同步原理
主从第一次同步时全量同步:
master如何判断slave是不是第一次来同步数据?这里会用到两个很重要的概念:
- Replication ld:简称replid,是数据集的标记,id一致则说明是同一数据集。每一个master都有唯一的replid,slave则会继承master节点的replid。(上图1.1和1.2中就是用slave的replid传给master,对比不一致,则是第一次,1.3会把master的replid和offset返回slave节点,slave节点记录下这两个信息,下次再同步时传给master)
- offset:偏移量,随着记录在repl baklog中的数据增多而逐渐增大。slave完成同步时也会记录当前同步的offset。如果slave的offset小于master的offset,说明slave数据落后于master,需要更新。
同步流程:
- slave节点请求增量同步
- master节点判断replid,发现不一致,拒绝增量同步
- master将完整内存数据生成RDB,发送RDB到slave
- slave清空本地数据,加载master的RDB
- master将RDB期间的命令记录在repl_baklog,并持续将log中的命令发送给slave
- slave执行接收到的命令,保持与master之间的同步
增量同步
如果slave重启,则会执行增量同步。
注意:repl_baklog大小有上限,写满后会覆盖最早的数据。如果slave断开时间过久,导致尚未备份的数据被覆盖,则无法基于log做增量同步,只能再次全量同步。
Redis主从集群同步优化
- 在master中配置repl-diskless-syncyes启用无磁盘复制,避免全量同步时的磁盘10。(要求网络带宽比较好)
- Redis单节点上的内存占用不要太大,减少RDB导致的过多磁盘10
- 适当提高replbaklog的大小,发现slave宕机时尽快实现故障恢复,尽可能避免全量同步
- 限制一个master上的slave节点数量,如果实在是太多slave,则可以采用主-从-从链式结构,减少master压力
简述全量同步和增量同步区别?
- 全量同步:master将完整内存数据生成RDB,发送RDB到slave。后续命令则记录在repl baklog,逐个发送给slave。
- 增量同步:slave提交自己的offset到master,master获取repl baklog中从offset之后的命令给slave
什么时候执行全量同步?
- slave节点第一次连接master节点时
- slave节点断开时间太久,repl baklog中的offset已经被覆盖时
什么时候执行增量同步?
- slave节点断开又恢复,并且在replbaklog中能找到offset时
哨兵的作用
Redis提供了哨兵(Sentinel)机制来实现主从集群的自动故障恢复。哨兵的结构和作用如下:
- 监控:不断检查您的master和slave是否按预期工作。
- 自动故障恢复:如果master故障,Sentinel会将一个slave提升为master。当故障实例恢复后也以新的master为主。
- 通知:Sentinel充当Redis客户端的服务发现来源,当集群发生故障转移时,会将最新的信息推送给Redis的客户端。
Sentinel基于心跳机制检测服务状态,每隔1S想集群的每个实例发送ping命令:
- 主观下线:如果某sentinel节点发现某实例围在规定时间响应,则认为该实例主观下线。
- 客观下线:若超过指定数量(quorum)的sentinel都认为该实例主观下线,则该实例客观下线。quorum值最好超过sentinel实例数量的一半。
选举新的master
- 判断slave节点与master节点断开时间的长短,如果超过指定值(down-after-miilliseconds*10)则会排除该slave。
- 判断slave节点的slave-priority值,越小优先级越高,如果是0则永不参与选举
- 如果slave-priority一样,则判断slave节点的offset值,越大说明数据越新,优先级越高
- 最后判断slave节点运行id大小,越小优先级越高
故障转移
- sentinel给备选的slave1节点发送slaveofnoone命令,让该节点成为master
- sentinel给所有其它slave发送slaveof 192.168.150.1017002命令,让这些slave成为新master的从节点,开始从新的master上同步数据。
- 最后,sentinel将故障节点标记为slave,当故障节点恢复后会自动成为新的master的slave节点
分片集群
主从和哨兵可以解决高可用、高并发读的问题。但是依然有两个问题没有解决
- 海量数据存储问题
- 高并发写的问题
使用分片集群可以解决上述问题,分片集群特征:
- 集群中有多个master,每个master保存不同数据
- 每个master都可以有多个slave节点
- master之间通过ping监测彼此健康状态
- 客户端请求可以访问集群任意节点,最终都会被转发到正确节点
散列插槽
Redis会把每一个master节点映射到0-16383共16383个插槽(hash slot)上。
数据key不是与节点绑定,而是与插槽绑定。redis会根据key的有效部分计算插槽值,分两种情况:
- key中包含“{}”,且“{}”中至少包含1个字符,“{}”中的部分是有效部分
- key中不包含“{}”,整个key都是有效部分
例如:key是num,那么就根据num计算,如果是{itcast}num,则根据itcast计算。计算方式是利用CRC16算法得到一个hash值,然后对16384取余,得到的结果就是slot值。
集群伸缩
使用redis-cli --cluster命令添加节点 add -node
redis-cli --cluster help 查看都有哪些命令
故障转移
数据迁移:
利用cluster failover命令可以手动让集群中的某个master宕机,切换到执行cluster failover命令的这个slave节点,实现无感知的数据迁移。其流程如下:
手动的Failover支持三种不同模式:
- 缺省:默认的流程,如图1~6步(推荐)
- force:省略了对offset的一致性校验
- takeover:直接执行第5步,忽略数据一致性、忽略master状态和其它master的意见
RedisTemplate访问分片集群
RedisTemplate底层同样基于lettuce实现了分片集群的支持,而使用的步骤与哨兵模式基本一致:
- 1.引入redis的starter依赖
- 2.配置分片集群地址
- 3.配置读写分离
与哨兵模式相比,其中只有分片集群的配置方式略有差异,如下:
spring:
redis:
cluster:
nodes:#指定分片集群的每一个节点信息
-10.153.150.101:8001
-10.153.150.101:8002
-10.153.150.101:9001
-10.153.150.101:9002
多级缓存
多级缓存就是充分利用请求处理的每个环节,分别添加缓存,减轻Tomcat压力,提升服务性能。
jvm进程缓存
本地进程缓存
分布式缓存,例如Redis:
- 优点:存储容量更大,可靠性更好,可以在集群间共享
- 缺点:访问缓存存在网络开销
- 场景:缓存数据量较大,可靠性要求较高,需要在集群间共享
进程本地缓存,例如HashMap,GuavaCache:
- 优点:读取本地内存,没有网络开销,速度更快
- 缺点:存储容量有限,可靠性较低,无法共享
- 场景:性能要求较高,缓存数据量较小
Caffeine是一个基于Java8开发的,提供了近乎最佳命中率的高性能的本地缓存库。目前Spring内部的缓存使用的就是Caffeine。GitHub地址:https://github.com/ben-manes/caffeine
Caffeine提供了三种缓存驱逐策略:
- 基于容量:设置缓存的数量上限
1创建缓存对象
Cache<String,String>cache=Caffeine.newBuilder().maximumSize(1)//设置缓存大小上限为1.build();
- 基于时间:设置缓存的有效时间
创建缓存对象
Cache<String,String>cache=Caffeine.newBuilder()
.expireAfterWrite(Duration.ofSeconds(10))/!设置缓存有效期为 10 秒,从最后一次写入开始计时
build();
- 基于引用:设置缓存为软引用或弱引用,利用GC来回收缓存数据。性能较差,不建议使用。
在默认情况下,当一个缓存元素过期的时候,Caffeine不会自动立即将其清理和驱逐。而是在一次读或写操作后,或者在空闲时间完成对失效数据的驱逐。
Lua常用语法
Lua 是一种轻量小巧的脚本语言,用标准C语言编写并以源代码形式开放,其设计目的是为了嵌入应用程序中,从而为应用程序提供灵活的扩展和定制功能。官网:https://www.lua.org/
数据类型
nil:这个最简单,只有值nil属于该类,表示一个无效值(在条件表达式中相当于false)。
boolean:包含两个值:false和true
number:表示双精度类型的实浮点数
string:字符串由一对双引号或单引号来表示
function:由C或Lua 编写的函数
table:Lua 中的表(table)其实是一个"关联数组"(associative arrays),数组的索引可以是数字、字符串或表类型。在 Lua 里,table 的创建是通过"构造表达式"来完成,最简单构造表达式是{},用来创建一个空表。
可以用type函数测试给定变量或者值的类型:
print(type(“Hello world”))
变量声明变量的时候,并不需要指定数据类型,都用local(局部变量)就可以:
local str=‘hello’;
local num=21 ;
数组:local arr={'gao','li'} 获取:arr[1] (下标从1开始)
table:local map={name=‘gao’,age=18} 获取:map.name或map['name']两种方式
。。。。。。。。。
优雅的key结构
业务名称:数据名:id
长度不超过44字节
不包含特殊字符
什么是BigKey
BigKey通常以Key的大小和Key中成员的数量来综合判定,例如:
- Key本身的数据量过大:一个String类型的Key,它的值为5MB。·
- Key中的成员数过多:一个ZSET类型的Key,它的成员数量为10,000个。
- Key中成员的数据量过大:一个Hash类型的Key,它的成员数量虽然只有1,000个但这些成员的Value(值)总大小为100 MB。
推荐值:
- 单个key的value小于10KB
- 对于集合类型的key,建议元素数量小于1000
BigKey的危害
网络阻塞
对BiaKev执行读请求时,少量的OPS就可能导致带宽使用率被占满,导致Redis实例,乃至所在物理机变慢
数据倾斜
BigKey所在的Redis实例内存使用率远超其他实例,无法使数据分片的内存资源达到均衡
Redis阻塞
对元素较多的hash、list、zset等做运算会耗时较旧,使主线程被阻塞
CPU压力
对BigKey的数据序列化和反序列化会导致CPU的使用率升,影响Redis实例和本机其它应用
如何发现BigKey
mredis-cli --bigkeys
利用redis-cli提供的--bigkeys参数,可以遍历分析所有key,并返回Key的整体统计信息与每个数据的Top1的big key
scan扫描
自己编程,利用scan扫描Redis中的所有key,利用strlen、hlen等命令判断key的长度(此处不建议使用MEMORY USAGE)
第三方工具
利用第三方工具,如 Redis-Rdb-Tools分析RDB快照文件,全面分析内存使用情况
网络监控
自定义工具,监控进出Redis的网络数据,超出预警值时主动告警
如何删除BigKey
BigKey内存占用较多,即便时删除这样的key也需要耗费很长时间,导致Redis主线程阻塞,引发一系列问题。
redis 3.0 及以下版本
如果是集合类型,则遍历BigKey的元素,先逐个删除子元素,最后删除BigKey
Redis 4.0以后
Redis在4.0后提供了异步删除的命令:unlink
资料来源:黑马程序员Redis入门到实战教程