
论文阅读
文章平均质量分 89
胆怯的ai萌新
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
论文阅读/博弈论/拍卖:《Truthful Auction for Cooperative Communications》
本文提出了一种名为TASC的诚实拍卖方案,旨在解决协作通信中缺乏激励机制的关键问题。通过将中继服务建模为多物品双向拍卖,TASC确保了参与者如实报价的占优策略,同时满足个体理性、预算平衡等经济特性。理论分析证明TASC具有多项式时间复杂度,实验结果表明其在保持系统效率的同时能有效防止市场操纵。该方案支持灵活选择中继分配算法以满足不同性能需求,为协作通信的实际应用提供了可行的激励解决方案。原创 2025-09-11 22:55:28 · 1216 阅读 · 0 评论 -
论文阅读《MCP Safety Audit: LLMs with the Model Context Protocol Allow Major Security Exploits》——全文阅读
为了减少开发开销并实现任何给定生成式 AI 应用程序的潜在组件之间的无缝集成,最近发布了模型上下文协议 (MCP),随后被广泛采用。MCP 是一种开放协议,它标准化了对大型语言模型 (LLM)、数据源和代理工具的 API 调用。因此,通过连接多个 MCP 服务器——每个服务器都定义了一组工具、资源和提示——用户能够定义完全由 LLM 驱动的自动化工作流。然而,我们发现当前的 MCP 设计对最终用户存在广泛的潜在安全风险。特别是,我们发现。原创 2025-04-25 11:36:34 · 1253 阅读 · 1 评论 -
论文阅读《MCP-Solver: Integrating Language Models with Constraint Programming Systems》——全文阅读
MCP Solver 通过模型上下文协议 (MCP) 将大型语言模型 (LLMs) 与符号求解器连接起来,这是一种用于 AI 系统集成的开源标准。为 LLMs 提供形式化求解和推理能力可以解决它们的关键缺陷,同时利用它们的优势。我们的实现提供了约束编程 (Minizinc)、命题可满足性 (PySAT) 和 SAT 模块理论 (Python Z3) 的接口。该系统采用迭代验证的编辑方法,以确保在修改过程中模型的一致性,并支持结构化细化。原创 2025-04-23 21:08:17 · 768 阅读 · 0 评论 -
论文阅读《MCP Safety Audit: LLMs with the Model Context Protocol Allow Major Security Exploits》
提出一个自动化工具。原创 2025-04-21 21:34:04 · 911 阅读 · 0 评论 -
论文阅读《MCP-Solver: Integrating Language Models with Constraint Programming Systems》
但确实通过 SMT 验证了某种。原创 2025-04-21 21:35:01 · 621 阅读 · 0 评论 -
论文阅读《Model Context Protocol (MCP): Landscape, Security Threats, and Future Research Directions》(1)
表1. MCP生态系统采用概述。表1展示了MCP如何在不同领域获得显著的吸引力,这表明它在实现无缝AI-to-tool交互方面的重要性日益增加。这一趋势表明,人们正在转向将MCP嵌入到开发人员环境中,以提高生产力并减少手动集成工作。MCP 有望成为人工智能驱动工作流程的关键推动者,推动跨行业的更安全、可扩展和高效的 AI 生态系统。原创 2025-04-21 21:32:13 · 1106 阅读 · 0 评论 -
论文阅读《Curriculum Learning for Reinforcement Learning Domains: A Framework and Survey》(3)——课程学习
课程是一个通用概念,它既包括组织过去经验的时间表,也包括通过任务训练获得经验的时间表。。Curriculum(课程)被定义为一个四元组:边的含义:路径终止:图3:先前工作中的课程结构示例。(a) 网格世界域中的线性序列(Narvekar等人,2017年)(b) 块状人的有向无环图(Svetlik等人,2017年)。单任务课程是课程C,其中考虑提取样本的任务集的基数|T | = 1,并且仅由目标任务mt组成。单任务课程本质上考虑如何最好地组织和训练从单个任务中获得的经验。原创 2025-04-09 20:28:53 · 1017 阅读 · 0 评论 -
论文阅读《Curriculum Learning for Reinforcement Learning Domains: A Framework and Survey》(3)——Background
###紧接上文的大纲和摘要,现在正式进入survey的第一部分——background在本节中,我们提供了强化学习 (RL) 和迁移学习 (TL) 的背景。强化学习考虑的是代理如何在一段时间内在其环境中行动,以便最大化某些标量奖励信号。我们可以将代理与其环境的交互(也称为任务)形式化为马尔可夫决策过程 (MDP)本文主要考虑:episodic MDPs翻译为:Episodic MDP 是一种任务被**划分为多个“情节”**的马尔可夫决策过程;每一情节从 Δs0 采样得到初始状态;在与环境交互若干步后,过原创 2025-04-08 09:16:05 · 691 阅读 · 0 评论 -
Curriculum Learning for Reinforcement Learning Domains: A Framework and Survey 阅读(2)——大纲介绍
Curriculum Learning for Reinforcement Learning Domains: A Framework and Survey 阅读(2)原创 2025-04-07 20:52:45 · 713 阅读 · 0 评论 -
论文阅读《Curriculum Learning for Reinforcement Learning Domains: A Framework and Survey》
这篇论文提出了课程学习(CL)在强化学习(RL)中的重要性,并详细讨论了其框架、挑战及解决方案。通过提出自适应的任务排序方法、任务迁移技巧和多任务训练方法,论文展示了 CL 如何有效提升 RL 代理的学习效率和泛化能力。同时,论文也指出了当前 CL 方法的局限性,并为未来的研究方向提供了宝贵的建议。原创 2025-04-01 21:29:31 · 1210 阅读 · 0 评论 -
论文阅读<A Survey of Curriculum Learning in Deep Reinforcement Learning>——如何在深度强化学习中引入课程学习以提升训练效率
论文阅读<A Survey of Curriculum Learning in Deep Reinforcement Learning>原创 2025-04-01 21:22:30 · 658 阅读 · 1 评论 -
衡量大模型的各个标准/数据集
大模型性能测试标准/数据集原创 2025-03-19 23:35:08 · 882 阅读 · 0 评论 -
QAT 量化感知训练流程
QAT 量化感知训练流程原创 2025-03-19 21:36:08 · 781 阅读 · 0 评论 -
A Comprehensive Evaluation of Quantization Strategies for Large Language Models全面评估大型语言模型的量化策略论文阅读
A Comprehensive Evaluation of Quantization Strategies for Large Language Models全面评估大型语言模型的量化策略论文阅读——————大模型量化的一个小综述原创 2025-03-18 21:47:11 · 1636 阅读 · 2 评论 -
VisFlow: Adaptive Content-Aware Video Analytics on Collaborative Cameras论文阅读
VisFlow: Adaptive Content-Aware Video Analytics on Collaborative Cameras论文阅读原创 2025-03-12 15:17:08 · 532 阅读 · 0 评论 -
AdaStreamer: Machine-Centric High-Accuracy Multi-Video Analytics with Adaptive Neural Codecs论文阅读
AdaStreamer: Machine-Centric High-Accuracy Multi-Video Analytics with Adaptive Neural Codecs论文阅读原创 2025-03-12 15:16:36 · 965 阅读 · 0 评论 -
LaTex新手保姆级教程
Latex使用保姆教学原创 2024-12-05 19:11:08 · 438 阅读 · 0 评论 -
语义通信Semantic Communications Overview, Open Issues, and Future Research Directions综述阅读
语义通信的核心综述阅读Semantic Communications: Overview, Open Issues, and Future Research Directions原创 2024-10-15 22:51:29 · 2707 阅读 · 0 评论