深度学习笔记09-猫狗识别2(Tensorflow)

目录

一、前期工作

1.导入数据并查看

​编辑

二、图片预处理

1.加载数据

​编辑

2.再一次检查数据

​编辑

3.配置数据集

4.可视化数据

三、构建VGG网络

​编辑四、编译模型

五、模型训练

六、模型评估

七、预测指定图片

八、总结


一、前期工作

1.导入数据并查看

import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
import os,PIL,pathlib
import warnings
# 支持中文
plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号
#隐藏警告
warnings.filterwarnings('ignore')

data_dir = pathlib.Path("./T8")
image_count = len(list(data_dir.glob('*/*')))

print("图片总数为:",image_count)

二、图片预处理

1.加载数据

batch_size = 64
img_height = 224
img_width = 224
"""
关于image_dataset_from_directory()的详细介绍可以参考文章:https://mtyjkh.blog.csdn.net/article/details/117018789
"""
train_ds = tf.keras.preprocessing.image_dataset_from_directory(
    data_dir,
    validation_split=0.2,
    subset="training",
    seed=12,
    image_size=(img_height, img_width),
    batch_size=batch_size)
val_ds = tf.keras.preprocessing.image_dataset_from_directory(
    data_dir,
    validation_split=0.2,
    subset="validation",
    seed=12,
    image_size=(img_height, img_width),
    batch_size=batch_size)

class_names = train_ds.class_names
print(class_names)

2.再一次检查数据

for image_batch, labels_batch in train_ds:
    print(image_batch.shape)
    print(labels_batch.shape)
    break

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值