深度学习笔记35-YOLOv5 使用自己的数据集进行训练

一、准备好自己的数据

1. 初步建立数据文件夹

在自己的主目录创建文件结构:

· 主目录
    . fruit_data(自己创建一个文件夹,将数据放到这里)
    	· Annotations(放置我们的.xml文件)
   		. images(放置图片文件)
    	. lmageSets
        	· Main(会在该文件夹内自动生成 train.txt、val.txt、test.txt 和 trainval.txt 四个文件,存放训练集、验证集、测试集图片的名字)

2. 运行 split_train_val.py 文件

lmageSets文件夹下面有个Main子文件夹,其下面存放了 train.txt、val.txt、test.txt 和 trainval.txt四个文件,它们是通过 split_train_val.py 文件来生成的,所以打开pycharm或者vscode或jupyter运行下列代码:

# 导入必要的库
import os
import random
import argparse

# 创建一个参数解析器
parser = argparse.ArgumentParser()

# print(os.getcwd())  # 打印当前工作目录
# print(os.listdir())  # 打印当前目录下的文件和文件夹


# 添加命令行参数,用于指定XML文件的路径,默认为 'Annotations' 文件夹
parser.add_argument('--xml_path', default=r"D:/paper_data/Annotations", type=str, help='input xml label path')

# 添加命令行参数,用于指定输出txt标签文件的路径,默认为 'ImageSets/Main' 文件夹
parser.add_argument('--txt_path', default="D:/paper_data/ImageSets\Main", type=str, help='output txt label path')

# 解析命令行参数
opt, unknown = parser.parse_known_args()

# 定义训练验证集和测试集的划分比例
trainval_percent = 1.0  # 使用全部数据:表示使用所有数据来划分训练集和验证集(即没有丢弃任何数据)
train_percent = 0.9  # 训练集占训练验证集的90%:表示在训练验证集的基础上,将90%的数据用于训练集,剩下的10%用于验证集。

# 训练验证集和测试集的划分比例示例
# 你可以调整 trainval_percent 和 train_percent 来控制训练集和验证集的划分。
# 例如,假设你想要70%的数据用于训练集,15%的数据用于验证集,15%的数据用于测试集,你可以这样调整
# trainval_percent = 0.85  # 训练验证集占比 85%
# train_percent = 0.8  # 训练集占训练验证集的 80%,即训练集占总数据的 68%


# 设置XML文件夹的路径,根据命令行参数指定
xmlfilepath = opt.xml_path

# 设置输出txt标签文件的路径,根据命令行参数指定
txtsavepath = opt.txt_path

# 获取XML文件夹中的所有XML文件列表
total_xml = os.listdir(xmlfilepath)

# 如果输出txt标签文件的文件夹不存在,创建它
if not os.path.exists(txtsavepath):
    os.makedirs(txtsavepath)

# 获取XML文件的总数
num = len(total_xml)

# 创建一个包含所有XML文件索引的列表
list_index = range(num)

# 计算训练验证集的数量
tv = int(num * trainval_percent)

# 计算训练集的数量
tr = int(tv * train_percent)

# 从所有XML文件索引中随机选择出训练验证集的索引
trainval = random.sample(list_index, tv)

# 从训练验证集的索引中随机选择出训练集的索引
train = random.sample(trainval, tr)

# 打开要写入的训练验证集、测试集、训练集、验证集的txt文件
file_trainval = open(txtsavepath + '/trainval.txt', 'w')
file_test = open(txtsavepath + '/test.txt', 'w')
file_train = open(txtsavepath + '/train.txt', 'w')
file_val = open(txtsavepath + '/val.txt', 'w')

# 遍历所有XML文件的索引
for i in list_index:
    name = total_xml[i][:-4] + '\n'  # 获取XML文件的名称(去掉后缀.xml),并添加换行符

    # 如果该索引在训练验证集中
    if i in trainval:
        file_trainval.write(name)  # 写入训练验证集txt文件
        if i in train:  # 如果该索引在训练集中
            file_train.write(name)  # 写入训练集txt文件
        else:
            file_val.write(name)  # 否则写入验证集txt文件
    else:
        file_test.write(name)  # 否则写入测试集txt文件

# 关闭所有打开的文件
file_trainval.close()
file_train.close()
file_val.close()
file_test.close()

注:
关于更改训练验证集和测试集的比例,可以调整 trainval_percent 和 train_percent 来控制训练集和验证集的划分。例如,假设你想要70%的数据用于训练集,15%的数据用于验证集,15%的数据用于测试集,你可以这样调整:

trainval_percent = 0.85  # 训练验证集占比 85%
train_percent = 0.8  # 训练集占训练验证集的 80%,即训练集占总数据的 68%

3. 生成 train.txt、test.txt、val.txt 文件

运行的代码

# -*- coding: utf-8 -*-
import xml.etree.ElementTree as ET
import os
from os import getcwd

# 定义数据集的名称
sets = ['train', 'val', 'test']

# 定义类别列表,这里有两个类别,可以根据需要添加更多类别
# classes = ["A", "B"]  # 请根据您的数据集修改这些类别名称
classes = ["pineapple", "snake fruit", "dragon fruit"]

# 获取当前工作目录的绝对路径
abs_path = os.getcwd()
print(abs_path)

# 定义一个函数,将边界框的坐标从绝对值转换为相对于图像大小的比例
def convert(size, box):
    dw = 1. / (size[0])  # 计算图像宽度的倒数
    dh = 1. / (size[1])  # 计算图像高度的倒数
    x = (box[0] + box[1]) / 2.0 - 1  # 计算中心点的x坐标
    y = (box[2] + box[3]) / 2.0 - 1  # 计算中心点的y坐标
    w = box[1] - box[0]  # 计算边界框的宽度
    h = box[3] - box[2]  # 计算边界框的高度
    x = x * dw  # 缩放x坐标
    w = w * dw  # 缩放宽度
    y = y * dh  # 缩放y坐标
    h = h * dh  # 缩放高度
    return x, y, w, h

# 定义一个函数,将标注文件从XML格式转换为YOLO格式
def convert_annotation(image_id):
    in_file = open('D:/paper_data/Annotations/%s.xml' % (image_id), encoding='UTF-8')  # 打开XML标注文件
    out_file = open('D:/paper_data/labels/%s.txt' % (image_id), 'w')  # 打开要写入的YOLO格式标签文件
    tree = ET.parse(in_file)  # 解析XML文件
    root = tree.getroot()

    filename = root.find('filename').text  # 获取图像文件名
    filenameFormat = filename.split(".")[1]  # 获取文件格式

    size = root.find('size')  # 获取图像尺寸信息
    w = int(size.find('width').text)  # 获取图像宽度
    h = int(size.find('height').text)  # 获取图像高度
    for obj in root.iter('object'):
        difficult = obj.find('difficult').text  # 获取对象的难度标志
        cls = obj.find('name').text  # 获取对象的类别名称
        if cls not in classes or int(difficult) == 1:
            continue
        cls_id = classes.index(cls)  # 获取类别的索引
        xmlbox = obj.find('bndbox')  # 获取边界框坐标信息
        b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text),
             float(xmlbox.find('ymax').text))
        b1, b2, b3, b4 = b
        # 标注越界修正
        if b2 > w:
            b2 = w
        if b4 > h:
            b4 = h
        b = (b1, b2, b3, b4)
        bb = convert((w, h), b)  # 调用convert函数,将边界框坐标转换为YOLO格式
        out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')  # 写入YOLO格式标签文件

    return filenameFormat

# 获取当前工作目录
wd = getcwd()

# 遍历每个数据集(train、val、test)
for image_set in sets:
    # 如果labels目录不存在,创建它
    if not os.path.exists('D:/paper_data/labels'):
        os.makedirs('D:/paper_data/labels')
    # 从数据集文件中获取图像ID列表
    image_ids = open('D:/paper_data/ImageSets/Main/%s.txt' % (image_set)).read().strip().split()
    # 打开要写入的文件,写入图像的文件路径和格式
    list_file = open('D:/paper_data/%s.txt' % (image_set), 'w')
    for image_id in image_ids:
        filenameFormat = convert_annotation(image_id)
        # list_file.write(abs_path + '/images/%s.%s\n' % (image_id, filenameFormat))  # 注意你的图片格式,如果是.jpg记得修改
        list_file.write('D:/paper_data\images/%s.%s\n' % (image_id, filenameFormat))
    list_file.close()

得到:

出现了四个文件,其中labels是标签数据,每个数据标签都由归一化的四个坐标构成

4. 创建 ab.yaml 文件

我放在了paper_data主目录下,这个文件名称可以自定义(注意路径),用vscode输入下列代码并存为yaml文件:

#path: ../datasets/coco  # dataset root dir
train: "D:/paper_data/train.txt" # train images (relative to 'path') 118287 images
val: "D:/paper_data/val.txt"  # train images (relative to 'path') 5000 images
#test: test-dev2017.txt

nc: 3  # number of classes

names: ["pineapple", "snake fruit", "dragon fruit"] # 改成自己的类别

打开cmd运行下列代码,如果在之前有创建过虚拟环境,记得先激活。

cd C:\Users\***\yolov5
yolov5-venv\Scripts\activate
python "C:\Users\xiangkeyi\yolov5\train.py" --img 900 --batch 2 --epochs 100 --data "D:\paper_data\ab.yaml" --cfg "C:\Users\xiangkeyi\yolov5\models\yolov5s.yaml" --weights weights/yolov5s.pt

5. 训练结果

根据上述结果保存路径,打开对应文件夹,其中部分结果展示

二、总结

接着上一篇文章配置完YOLOv5需要的环境后,本篇尝试用YOLOv5训练自己的数据。但是运行速度较慢。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值