
深度学习
文章平均质量分 77
深度学习实例学习笔记
m0_67869333
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
深度学习笔记32-ResNet50V2训练(Pytorch)
激活函数与批归一化的位置(核心差异)原始 ResNet:采用 “卷积→批归一化(BN)→激活函数(ReLU)” 的顺序,激活函数位于卷积操作之后。ResNetV2:采用 “预激活” 设计,顺序为 “批归一化(BN)→激活函数(ReLU)→卷积”,激活函数位于卷积操作之前。这一设计能缓解深层网络的梯度消失问题,使模型在训练时更稳定,尤其适合更深的网络结构。原创 2025-08-04 14:47:09 · 358 阅读 · 0 评论 -
深度学习笔记31-ResNet算法实战与解析(Pytorch)
ResNet(Residual Network,残差网络)是一种深度卷积神经网络(CNN)架构,其核心创新是残差连接,成功解决了深度神经网络训练中的 “梯度消失” 和 “性能退化” 问题,使得训练超深网络(甚至超过 1000 层)成为可能。(ps:只要有合适的网络结构,更深的网络肯定会比较浅的网络效果要好。梯度消失:梯度消失是指在反向传播过程中,随着网络层数的增加,前面几层的梯度值变得非常小,接近于零。这会导致权重更新非常缓慢,从而无法有效训练深层网络。原创 2025-07-30 12:11:54 · 448 阅读 · 0 评论 -
深度学习笔记30-阿尔茨海默病诊断特征优化版(Pytorch)
混淆矩阵概述:混淆矩阵是一个二维矩阵,用于总结分类模型在不同类别上的预测结果,包括 True Positive (TP)、False Negative (FN)、False Positive (FP)、True Negative (TN)。性能指标:准确率(Accuracy):模型正确分类的样本占总样本数的比例。精确率(Precision):模型预测为正类别的样本中有多少是真正的正类别。召回率(Recall):实际为正类别的样本中,有多少被模型正确预测为正类别。原创 2025-07-11 20:45:28 · 267 阅读 · 0 评论 -
深度学习笔记29-RNN实现阿尔茨海默病诊断(Pytorch)
训练循环size = len(dataloader.dataset) # 训练集的大小num_batches = len(dataloader) # 批次数目, (size/batch_size,向上取整)train_loss, train_acc = 0, 0 # 初始化训练损失和正确率for X, y in dataloader: # 获取图片及其标签# 计算预测误差pred = model(X) # 网络输出。原创 2025-07-04 20:52:12 · 559 阅读 · 0 评论 -
深度学习笔记28-糖尿病预测模型优化探索(Pytorch)
return out# 训练循环size = len(dataloader.dataset) # 训练集的大小num_batches = len(dataloader) # 批次数目, (size/batch_size,向上取整)train_loss, train_acc = 0, 0 # 初始化训练损失和正确率for X, y in dataloader: # 获取图片及其标签# 计算预测误差pred = model(X) # 网络输出。原创 2025-06-27 09:53:20 · 308 阅读 · 0 评论 -
深度学习笔记27-LSTM实现糖尿病探索与预测(Pytorch)
return outmodel# 训练循环size=len(dataloader.dataset) #训练集大小num_batches=len(dataloader) #批次数目train_loss,train_acc=0,0 #初始化训练损失和正确率for X,y in dataloader: #获取图片及其标签#计算预测误差pred=model(X) #网络输出loss=loss_fn(pred,y) #计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失。原创 2025-06-20 21:25:46 · 454 阅读 · 0 评论 -
深度学习笔记26-天气预测(Tensorflow)
2.是否会下雨 如果今天不下雨,那么明天下雨的机会=53.22%如果今天下雨,那么明天下雨的机会=46.78% 5.气温对下雨的影响三、数据预处理1.缺失值处理四、预测是否会下雨1.搭建神经网络2.模型训练3.结果可视化 探索性数据分析(EDA)在天气预测项目中具有不可替代的重要价值,主要优点:数据原创 2025-06-13 21:39:35 · 551 阅读 · 0 评论 -
深度学习笔记24-LSTM火灾预测(Ptorch)
训练循环train_loss=0 #初始化训练损失和正确率#计算预测误差pred = model(x)#网络输出loss = loss_fn(pred,y)#计算网络输出和真实值之间的差距#反向传播opt.zero_grad()#grad属性归零loss.backward()#反向传播opt.step()#每一步自动更新#记录losssize = len(dataloader.dataset) # 测试集的大小。原创 2025-05-23 21:52:33 · 656 阅读 · 0 评论 -
深度学习笔记22-RNN心脏病预测(Tensorflow)
2.标准化 三、构建RNN模型四、编译模型五、训练模型 六、模型评估 compile_metrics:83.6451%原创 2025-04-25 20:57:52 · 457 阅读 · 0 评论 -
深度学习笔记21-车牌识别(Pytorch)
【代码】深度学习笔记21-车牌识别(Pytorch)原创 2025-04-18 20:30:27 · 318 阅读 · 0 评论 -
深度学习笔记20-YOLOv5-Backbone模块实现(Pytorch)
YOLO 的 Backbone 模块是整个目标检测架构中的关键部分,负责从输入图像中提取特征。原创 2025-04-04 19:46:56 · 342 阅读 · 0 评论 -
深度学习笔记19-YOLOv5-C3模块实现(Pytorch)
三、训练模型1.编写训练函数2.编写测试函数3.正式训练2.模型评估五、总结1. YOLO的C3模块原创 2025-03-28 20:13:42 · 358 阅读 · 0 评论 -
深度学习笔记18-马铃薯病害识别(Pytorch)
VGG-16(Visual Geometry Group-16)是由牛津大学视觉几何组提出的一种深度卷积神经网络架构,用于图像分类和对象识别任务。VGG-16在2014年被提出,是VGG系列中的一种。VGG-16之所以备受关注,是因为它在ImageNet图像识别竞赛中取得了很好的成绩,展示了其在大规模图像识别任务中的有效性。以下是VGG-16的主要特点:1. 深度:VGG-16由16个卷积层和3个全连接层组成,因此具有相对较深的网络结构。这种深度有助于网络学习到更加抽象和复杂的特征。 2. 卷积层的设计原创 2025-03-21 21:22:17 · 374 阅读 · 0 评论 -
深度学习笔记17-VGG-16算法(Pytorch)
2. 卷积层的设计:VGG-16的卷积层全部采用3x3的卷积核和步长为1的卷积操作,同时在卷积层之后都接有ReLU激活函数。这种设计的好处在于,通过堆叠多个较小的卷积核,可以提高网络的非线性建模能力,同时减少了参数数量,从而降低了过拟合的风险。3. 池化层:在卷积层之后,VGG-16使用最大池化层来减少特征图的空间尺寸,帮助提取更加显著的特征并减少计算量。4. 全连接层:VGG-16在卷积层之后接有3个全连接层,最后一个全连接层输出与类别数相对应的向量,用于进行分类。原创 2025-03-14 11:42:51 · 512 阅读 · 0 评论 -
深度学习笔记16-运动鞋品牌识别(Pytorch)
目录一、前期工作1.导入数据并读取2.创建数据加载器 二、构建简单的CNN网络三、训练模型1.编写训练函数2.编写测试函数3.设置动态学习率4.正式训练四、结果可视化五、尝试数据增强操作六、总结1.torchvision.transforms.Compose()类2.[N, C, H, W]3.感受野与卷积核大小的权衡 2.编写测试函数3.设置动态学习率4.正式训练根据loss和accuracy图,训练准确率明显高于测试准确原创 2025-03-06 18:37:44 · 1177 阅读 · 0 评论 -
深度学习笔记15-猴痘病识别(Pytorch)
参数详解是 PyTorch 中用于加载和管理数据的一个实用工具类。它允许你以小批次的方式迭代你的数据集,这对于训练神经网络和其他机器学习任务非常有用。DataLoaderdataset(必需参数):这是你的数据集对象,通常是的子类,它包含了你的数据样本。batch_size(可选参数):指定每个小批次中包含的样本数。默认值为 1。shuffle(可选参数):如果设置为True,则在每个 epoch 开始时对数据进行洗牌,以随机打乱样本的顺序。这对于训练数据的随机性很重要,以避免模型学习到数据的顺序性。原创 2025-02-21 21:36:02 · 614 阅读 · 0 评论 -
深度学习笔记13-CIFAR彩色图片识别(Pytorch)
原型:torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, padding_mode='zeros', device=None, dtype=None)( int ) – 输入图像中的通道数( int ) – 卷积产生的通道数( int or tuple ) – 卷积核的大小stride。原创 2025-01-24 21:25:04 · 873 阅读 · 0 评论 -
深度学习笔记12-mnist手写数字识别(Pytorch)
函数原型:torchvision.datasets.MNIST(root,train=True,transform=None,target_transform=None,download=False)root(string):数据地址train(string):True-训练集,False-测试集download(bool,optional):如果为True,从互联网上下载数据集,并把数据集放在root目录下。原创 2025-01-17 21:09:25 · 1202 阅读 · 0 评论 -
深度学习笔记11-优化器对比实验(Tensorflow)
通过本次实验,学会了比较不同优化器(Adam和SGD)在训练过程中的性能表现,可视化训练过程的损失曲线和准确率等指标。这是一项非常重要的技能,在研究论文中,可以通过这些优化方法可以提高工作量。原创 2025-01-10 18:51:29 · 786 阅读 · 0 评论 -
深度学习笔记10-数据增强(Tensorflow)
在深度学习中,数据增强(Data Augmentation)是一种通过对现有数据进行各种转换和变换,从而生成更多训练样本的方法。在计算机视觉中,常见的数据增强方法包括随机裁剪、旋转、翻转、缩放、平移、亮度调整、对比度调整、添加噪声等。其主要目的是通过增加数据量和多样性,帮助模型学习到更加泛化的特征,提高模型的鲁棒性,并减少过拟合现象。随机亮度、对比度、色度、饱和度的设置# 这是大家可以自由发挥的一个地方# 随机改变图像对比度# 随机改变图像的亮度# 随机改变图像的色度# 随机改变图像的饱和度。原创 2025-01-03 20:19:32 · 1210 阅读 · 0 评论 -
深度学习笔记09-猫狗识别2(Tensorflow)
在训练模型的时候报错,在问了AI后,知道了动态调整学习率需要注意版本兼容问题。TensorFlow 的优化器属性因版本不同而有所变化,新版本中使用model.optimizer.learning_rate.assign(lr),而旧版本中可以用 K.set_value(model.optimizer.lr, lr)。此外,确保学习率的数据类型为浮点数(float),避免因类型不匹配导致报错。通过兼容不同版本的方式,不仅提高了代码的鲁棒性,也为后续模型优化提供了更灵活的解决方案。原创 2024-12-27 19:34:32 · 958 阅读 · 0 评论 -
深度学习笔记08-猫狗识别(Tensorflow)
tqdm是Python的进度条库,可以在 Python长循环中添加一个进度提示信息。原创 2024-12-20 20:35:07 · 821 阅读 · 0 评论 -
深度学习笔记07-咖啡豆识别(Tensorflow)
自己搭建VGG模型时,需要先对数据进行归一化操作,利用rescaling包并通过.map(lambda x,y:)原创 2024-12-13 19:23:23 · 502 阅读 · 0 评论 -
深度学习笔记06-好莱坞明星识别(Tensorflow)
1. 网络结构层数: VGG16包含16个主要的权重层,包括13个卷积层和3个全连接层。卷积层: VGG16使用小的3x3卷积核进行卷积操作,增加了网络的深度,同时保持了较少的参数数量。池化层: 每隔几个卷积层后,会使用2x2的Max Pooling降低特征图的尺寸,并减少计算量。2. 激活函数VGG网络普遍使用ReLU作为激活函数,增加了网络的非线性表达能力。3. 输入和输出输入: VGG16接受224x224像素的RGB图像作为输入。原创 2024-12-06 11:23:35 · 571 阅读 · 0 评论 -
深度学习笔记04-CNN实现猴痘病识别(Tensorflow)
在深度学习中,模型训练是一个反复进行的过程,模型的效果也会随着训练的进行不断改变。所以可以利用回调函数及时保存模型。在上一个实例中,我们自定义了一个监控val_accuracy的回调函数也是为了避免模型效果的丢失。而且ModelCheckpoint函数也有助于防止过拟合,及时停止训练或回溯到表现较好的模型权重,有助于提高模型泛化能力。原创 2024-11-16 14:07:47 · 748 阅读 · 0 评论