Python时间序列:用PaddlePaddle实现LSTM股票预测

目录

Paddlepaddle实现LSTM - 股票预测

背景知识

1 - 引用库

2 - 数据预处理

期望输出:

完成以下训练集和数据集的分割代码

完成归一化

3 - 构造Reader

4 - 搭建模型

fluid.layers.data

fluid.layers.fc

fluid.layers.dynamic_lstm

fluid.layers.sequence_pool

根据以上API完成LSTM模型搭建

fluid.default_startup_program()

fluid.DataFeeder

fluid.io.save_inference_model

fluid.create_lod_tensor

fluid.io.load_inference_model


Paddlepaddle实现LSTM - 股票预测

欢迎大家来到这个实验,本实验实现的是利用LSTM (长短期记忆神经网络) 进行股票预测,通过本次实验,你将了解股票预测的方法、股票预测的数据集处理技巧、LSTM模型搭建以及训练过程等等,除此之外,你还将看到Paddlepaddle框架实现深度学习的一个十分清晰的结构流程,加深你对Paddlepaddle的了解。

在开始实验之前,我们有必要先来了解一下股票预测的一些知识,以便对股票预测实验有一个整体把握。

背景知识

我们之前做过关于房价预测的实验,房价预测就是根据影响房价的一些因素(面积,地理位置等等)来构建一个全连接层神经网络并对其函数参数进行训练,最后使得损失函数收敛,这样一来我们就可以得到确切的函数关系式,每给一个输入,便得到一个相应的房价输出,每次的房价输出仅仅与本次的输入有关,而与之前的输入输出没有关系,即房价的数据不构成时间序列。

股票预测虽然同样是预测类的实验,但却与房价预测有很大的不同,因为我们无法只根据一天的股票数据就能对后面的股票进行预测,换句话说,股票价格不仅仅与前面一天的数据有关系,还跟以前的股票价格有关系,这样,股票的数据就构成了一种时间序列,而每次决定股票预测结果的也不是仅仅是本次的输入,而是过去一段时间的数据序列,所以我们不能像预测房价那样使用全连接层神经网络,而是使用LSTM模型。

下面是LSTM模型的一个原理简图: 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值