PINN解PDE完整代码赏鉴(pytorch)

目录

文献阅读-物理融合深度学习综述-PINN-有代码_哔哩哔哩_bilibili

 定义MLP(nn子类)

定义求导/梯度gradients(u,x,order=1) 

关于另一种写法(批量求导在提取) 

关于unsqueeze

​编辑 

损失函数的定义

 第一个物理损失loss1:

 第二个物理损失loss2:

训练train

 overlook(糊但可以看个大概)

 Q


鸣谢大佬

文献阅读-物理融合深度学习综述-PINN-有代码_哔哩哔哩_bilibili

 定义MLP(nn子类)

代码简介:

定义MLP(继承torch的nn)

        定义 self的net属性:利用sq序列构建全连接层+激活(tanh)

定义forward(x)

        return net(x)

定义求导/梯度gradients(u,x,order=1) 

 嵌入torch的autograd的grad,把它改造成可以求多次导数的形式(利用递归写)

 注意create graph要是true,才好算

关于另一种写法(批量求导在提取) 

关于unsqueeze

接受的参数是第个维度 

-1当然就是倒数第一维的意思啦。

预计输出u_x的形状从(a,)变成(a,1)

 

损失函数的定义

 第一个物理损失loss1:

说是物理知识,其实就是自己造的待求解的PDE(ux+uut-uxx)与0的mse误差

 第二个物理损失loss2:

说是物理知识,其实就是自己的初值和自己设置的pde初值(sinπx)的mse误差

loss是他俩和,可加权

注意点:

1.x&t保留梯度require grad=true

2.输出与u保持一致

训练train

代码简介:

类.train()(继承torchNN的train方法)

优化器:torch自带adam

                优化对象应该是loss

1000轮循环:

        opt零梯度

        计算loss

        取出loss。depatch

        反向传播(loss。backward())

        优化器。step()

 overlook(糊但可以看个大概)

跟刚才对应

定义类

 上接forward

loss1 

loss1和loss 2

 

train() 上接train及收尾if__name

 Q

いつ把loss放进opt了?还是说把loss。backward自动默认梯度取他的梯度【按优化器指示】下降? 

<think>好的,我需要帮助用户找到一个关于物理信息神经网络(PINN)的代码示例。首先,用户提到了他们正在查找相关的代码,并且引用了几篇关于数据驱动决偏微分方程和深度学习的文章。用户可能已经有一定的背景知识,但需要具体的代码示例来理和实现PINN。 首先,我应该回忆一下PINN的基本概念。PINN是一种结合了物理方程约束的神经网络,通常用于求偏微分方程(PDEs)。它的特点是将物理方程的残差作为损失函数的一部分,从而在训练过程中保持的物理一致性。 接下来,我需要考虑用户可能需要什么样的代码示例。通常,PINN的实现涉及定义神经网络结构、构造损失函数(包括数据损失和方程残差损失),以及训练过程。使用TensorFlow或PyTorch这样的深度学习框架是比较常见的。 我应该寻找或构造一个简单的例子,比如求一个常见的偏微分方程,如泊松方程或热方程。例如,考虑一维的Burgers方程,这个问题在PINN的文献中经常被用作示例。 然后,我需要确保代码结构清晰,包含关键部分:网络定义、损失函数计算、优化器设置和训练循环。同时,要添加注释,说明每个部分的作用,帮助用户理。 还需要检查用户提供的引用,特别是引用[3]提到的关于数据驱动决偏微分方程的部分,可能相关的代码会涉及如何将物理方程整合到神经网络中。因此,在代码示例中需要明确展示如何将PDE的残差加入损失函数。 另外,用户可能对代码中的数学公式感兴趣,所以需要用LaTeX格式正确表示方程,比如Burgers方程的形式:$u_t + uu_x = \nu u_{xx}$,并确保独立公式使用$$...$$格式。 最后,生成的相关问题需要围绕PINN的实现细节、应用案例和优化方法,这样用户如果有进一步的问题,可以继续探索这些方向。例如,如何选择损失权重、如何处理复杂边界条件、PINN在流体力学中的应用等。 总结步骤: 1. 选择一个简单的PDE问题作为示例(如Burgers方程)。 2. 使用PyTorch或TensorFlow编写神经网络结构。 3. 定义损失函数,包括数据损失和方程残差损失。 4. 设置优化器和训练循环。 5. 添加注释和公式说明。 6. 生成相关问题,帮助用户深入理。 需要确保代码正确,语法无误,并且符合用户提到的格式要求,比如行内公式用$...$,独立公式用$$...$$,同时用中文回答,结构清晰。</think>以下是一个使用PyTorch实现的物理信息神经网络(PINN代码示例,用于求一维Burgers方程。该方程形式为: $$u_t + uu_x = \nu u_{xx}, \quad x \in [-1,1], t \in [0,1]$$ 边界条件为$u(-1,t)=u(1,t)=0$,初始条件为$u(x,0)=-\sin(\pi x)$[^3]。 ```python import torch import torch.nn as nn import numpy as np # 定义神经网络结构 class PINN(nn.Module): def __init__(self): super().__init__() self.net = nn.Sequential( nn.Linear(2, 20), # 输入(x,t) nn.Tanh(), nn.Linear(20, 20), nn.Tanh(), nn.Linear(20, 1) # 输出u ) def forward(self, x, t): inputs = torch.cat([x, t], dim=1) return self.net(inputs) # 定义PDE残差计算 def pde_residual(net, x, t, nu=0.01/np.pi): x.requires_grad = True t.requires_grad = True u = net(x, t) # 计算梯度 u_t = torch.autograd.grad(u, t, grad_outputs=torch.ones_like(u), create_graph=True)[0] u_x = torch.autograd.grad(u, x, grad_outputs=torch.ones_like(u), create_graph=True)[0] u_xx = torch.autograd.grad(u_x, x, grad_outputs=torch.ones_like(u_x), create_graph=True)[0] # Burgers方程残差 residual = u_t + u*u_x - nu*u_xx return residual # 训练配置 model = PINN() optimizer = torch.optim.Adam(model.parameters(), lr=1e-3) # 生成训练数据 n_samples = 1000 x_train = torch.FloatTensor(n_samples, 1).uniform_(-1, 1) t_train = torch.FloatTensor(n_samples, 1).uniform_(0, 1) x_train.requires_grad = True t_train.requires_grad = True # 训练循环 for epoch in range(10000): optimizer.zero_grad() # 计算边界条件损失 u_pred = model(x_train, t_train) residual = pde_residual(model, x_train, t_train) # 组合损失函数 loss = torch.mean(residual**2) loss.backward() optimizer.step() if epoch % 1000 == 0: print(f"Epoch {epoch}, Loss: {loss.item():.4e}") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值