LSTM介绍
LSTM(长短时记忆网络)是一种特殊类型的循环神经网络(RNN),用于处理和预测时间序列数据。相比于传统的RNN,LSTM具有更好的处理长期依赖性和记忆能力。关键思想是引入了一个称为"记忆单元"的组件。记忆单元能够接收输入、输出和保留信息,以便在整个序列中传递和保存重要的信息。这种机制使得LSTM能够更好地处理长序列,避免梯度消失问题,并且具有较长的记忆。其结构包括三个主要的门控单元:输入门、遗忘门和输出门。输入门决定了多少输入信息应该被记忆,遗忘门决定了多少旧的记忆应该被遗忘,输出门决定了多少记忆应该输出给下一个时间步。训练过程通常使用反向传播算法和梯度下降法来更新网络参数。在训练过程中,LSTM可以通过学习时间序列数据中的模式和规律来预测未来的值。
单变量时间预测
数据是github上下载ETTh1.csv转换的,我用的是时间和OT列
预测结果图
数据集
是从github上下载的油温数据ETTh1.csv,只用了里面的时间列和OT列,具体地址不记得了,需要数据集的和我说一下。
完整代码
import csv
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.preprocessing import MinMaxScaler
from sklearn.metrics import r2_score
import tensorflow as tf
from tensorflow.python.keras import Sequential, layers, utils
def predict_next(model, sample, epoch=20):
temp1 = list(sample[:, 0])
for i in range(epoch):
sample = sample.reshape(1, x_Seq_len, 1)
pred = model.predict(sample)
value = pred.tolist()[0][0]
temp1.append(value)
sample = np.array(temp1[i + 1 : i + x_Seq_len + 1])
return temp1
def create_new_dataset(dataset, seq_len=12):
"""基于原始数据集构造新的序列特征数据集
Params:
dataset : 原始数据集
seq_