「实战案例:使用 LSTM 进行单变量时间序列预测(附Python完整代码)

LSTM介绍

        LSTM(长短时记忆网络)是一种特殊类型的循环神经网络(RNN),用于处理和预测时间序列数据。相比于传统的RNN,LSTM具有更好的处理长期依赖性和记忆能力。关键思想是引入了一个称为"记忆单元"的组件。记忆单元能够接收输入、输出和保留信息,以便在整个序列中传递和保存重要的信息。这种机制使得LSTM能够更好地处理长序列,避免梯度消失问题,并且具有较长的记忆。其结构包括三个主要的门控单元:输入门、遗忘门和输出门。输入门决定了多少输入信息应该被记忆,遗忘门决定了多少旧的记忆应该被遗忘,输出门决定了多少记忆应该输出给下一个时间步。训练过程通常使用反向传播算法和梯度下降法来更新网络参数。在训练过程中,LSTM可以通过学习时间序列数据中的模式和规律来预测未来的值。

单变量时间预测

数据是github上下载ETTh1.csv转换的,我用的是时间和OT列

预测结果图

数据集

        是从github上下载的油温数据ETTh1.csv,只用了里面的时间列和OT列,具体地址不记得了,需要数据集的和我说一下。

完整代码

import csv
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.preprocessing import MinMaxScaler
from sklearn.metrics import r2_score
import tensorflow as tf
from tensorflow.python.keras import Sequential, layers, utils


def predict_next(model, sample, epoch=20):
    temp1 = list(sample[:, 0])
    for i in range(epoch):
        sample = sample.reshape(1, x_Seq_len, 1)
        pred = model.predict(sample)
        value = pred.tolist()[0][0]
        temp1.append(value)
        sample = np.array(temp1[i + 1 : i + x_Seq_len + 1])
    return temp1


def create_new_dataset(dataset, seq_len=12):
    """基于原始数据集构造新的序列特征数据集
    Params:
        dataset : 原始数据集
        seq_
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值