自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(24)
  • 收藏
  • 关注

原创 UNETR++: Delving Into Efficient and Accurate 3D Medical Image Segmentation

得益于Transformer模型的成功,近期研究开始探索其在3D医学分割任务中的适用性。在Transformer模型中,自注意力机制是核心构建模块之一,与基于局部卷积的设计相比,它致力于捕捉长距离依赖关系。然而,自注意力操作存在二次复杂度问题,这已成为计算瓶颈,尤其在体医学成像中——此类输入为3D形式且包含大量切片。本文提出一种3D医学图像分割方法,名为UNETR++,该方法既能生成高质量分割掩码,又在参数数量、计算成本和推理速度方面具备高效性。

2025-07-24 11:08:23 721

原创 【每天一学】ECA(Efficient Channel Attention)

ECA 是一个让网络自己决定哪些通道重要的模块,就像给每个工人评分,从而让整个网络更聪明,但它非常轻,不会拖慢训练速度,也不会让模型变大。(比如3个通道滑一下)来让相邻的通道互相沟通一下(主要就是学习通道间关系,不降维);”的方法,把每个通道的空间信息压缩成一个数字(相当于一个通道的“总体表现”);用这些权重乘以原来的特征图通道,实现强调重要通道、抑制不重要通道的效果。意思是:第1、4个通道非常重要,第3个通道不重要,第64个通道一般重要;:“用一维卷积代替全连接层,避免降维,实现高效的通道注意力建模。

2025-07-16 13:56:02 364

原创 【超分论文精读】——LightBSR(ICCV2025)

本文提出LightBSR,一种基于判别性隐式退化表示学习的轻量级盲超分辨率方法。针对现有IDE-BSR方法忽视退化表示判别性导致模型复杂的问题,LightBSR通过知识蒸馏框架增强隐式退化表示(IDR)的区分能力:教师阶段引入退化先验约束的对比学习技术,学生阶段通过特征对齐实现知识迁移。实验表明,该方法在合成和真实退化场景中均能以极低复杂度(参数量仅3.1M)实现SOTA性能,如Urban100数据集上PSNR优于CDFormerS(11.9M参数)0.11dB。

2025-07-15 17:02:01 644

原创 盲超分的核心概念

盲超分的问题:在未知 𝑘、𝑠、𝑛 的情况下,从 𝑦估计 𝑥。:逐步修正模糊核,避免一次性估计的误差累积。

2025-07-11 15:52:13 409

原创 Python从入门到实战学习笔记(二)

❷ """显示简单的问候语。"""")本例演示了最简单的函数结构。❶处的代码行使用关键字def来告诉Python,你要定义一个函数。这是函数定义,向Python指出了函数名,还可能在圆括号内指出函数为完成任务需要什么样的信息。在这里,函数名为,它不需要任何信息就能完成工作,因此括号是空的(即便如此,括号也必不可少)。最后,定义以冒号结尾。紧跟在后面的所有缩进行构成了函数体。❷处的文本是称为文档字符串(docstring)的注释,描述了函数是做什么的。

2025-06-21 16:50:39 980

原创 Python从入门到实战学习笔记(一)

列表由一系列按特定顺序排列的元素组成。你可以创建包含字母表中所有字母、数字0~9或所有家庭成员姓名的列表;也可以将任何东西加入列表中,其中的元素之间可以没有任何关系。列表通常包含多个元素,因此给列表指定一个表示复数的名称(如lettersdigits或names)是个不错的主意。在Python中,用方括号([])表示列表,并用逗号分隔其中的元素。结果:(1)访问列表元素列表是有序集合,因此要访问列表的任意元素,只需将该元素的位置(索引)告诉Python即可。

2025-06-20 15:58:09 687

原创 Radiative Gaussian Splatting for Efficient X-ray Novel View Synthesis———文章解读

本文提出X-Gaussian框架,首次将3D高斯溅射技术应用于X射线成像领域。针对X射线各向同性的特性,该方法摒弃传统球谐函数,设计辐射强度模型(RIRF)通过特征向量内积直接预测辐射强度,并开发可微分辐射光栅化(DRR)加速渲染。创新性地提出角度姿态长方体均匀初始化(ACUI)策略,利用扫描仪几何参数直接生成初始点云和相机参数,取代传统耗时且不稳定的SFM方法。实验表明,X-Gaussian在稀疏视角CT重建任务中性能显著优于现有方法,PSNR提升6.5dB,训练速度提高7倍,推理速度提升73倍。

2025-06-19 09:36:48 1121

原创 超分模型文章汇总

一下列出的这些模型是,它们代表了深度学习超分辨率的发展历程。研究它们的,有助于你找到适合的模型。(2014):最早的深度学习SR模型,三层CNN。(2016):像素卷积提升分辨率,减少计算量。(2016):深度残差学习,提高SR性能。(2016):递归神经网络SR,提高感受野。(2017):深度递归SR网络,提高重建质量。(2017):去掉批归一化的ResNet,提高性能。(2018):密集连接网络,提升信息流。(2017):引入GAN,提高感知质量。(2018):改进SRGAN,更清晰的边缘。

2025-06-18 10:01:59 1170

原创 A Survey on 3D Gaussian Splatting——3D高斯领域综述

3D高斯splatting(3DGS)通过显式表示和可微渲染技术,实现了实时渲染与高度可编辑性,成为辐射场领域的重要突破。本文首次系统综述了3DGS的原理、优化方法(如自适应密度控制)及关键进展,包括稀疏输入增强、内存压缩、真实感提升等技术改进。研究还探讨了3DGS在语义建模、动态场景和混合表示中的扩展应用,并指出未来方向如物理/语义感知建模、自动驾驶仿真等。3DGS凭借其实时性与灵活性,为下一代3D重建开辟了新路径,但其在计算效率和大规模场景适应性方面仍需优化。

2025-06-17 19:33:45 1181

原创 3D高斯泼溅和4D高斯

高斯泼溅点是 3D Gaussian Splatting 场景建模的基本单元“一个具有体积、方向、不透明度、颜色和形变信息的三维椭球体,通过高斯函数来建模。你可以理解为在空间中放置了许多微小“彩色雾团”,它们像墨水滴一样一起混合,最终形成逼真的3D图像。特性含义类比传统点高斯点是“可扩张 + 可旋转 + 有颜色 + 不透明度 + 方向感”的“智能点”类比体素/网格高斯点是连续分布的,不需要规则网格,更灵活、更稀疏类比 NeRF 点样本。

2025-06-17 11:49:59 1723

原创 3D Gaussian Splatting for Real-Time Radiance Field Rendering——文章方法精解

Point-NeRF是一种将稀疏点云与 NeRF 结合起来的方法,通过给点添加神经特征,并利用体积渲染完成新视角合成;而则是用可渲染的高斯分布表示场景点,摆脱了神经网络渲染的成本,实现了更高效的实时效果。Plenoxels是一种完全抛弃神经网络的 NeRF 变体,用稀疏体素网格表示场景,每个体素中保存颜色与密度等信息,训练和渲染都非常快。它是从“神经渲染”走向“直接优化”的关键过渡点之一,也为后来的 3D Gaussian Splatting 这种“完全可显式渲染”的方法铺平了道路。步骤技术关键词目的。

2025-05-21 21:48:10 1699

原创 3DGS——基础知识学习笔记

什么是 NeRF?是 2020 年由 Google 提出的新型 3D 表示方法,它使用一个神经网络来拟合一个场景的体积颜色与密度函数,然后利用体积渲染技术合成新视角图像。NeRF 是 Gaussian Splatting 出现之前最广泛使用的三维重建方案之一。NeRF 的核心思想𝑥 ∈ ℝ³:表示空间中的一个 3D 点𝑑 ∈ ℝ³:表示相机视角方向(单位向量)输出c ∈ ℝ³:该点在该方向下的 RGB 颜色输出σ ∈ ℝ⁺:体积密度(用来计算透明度)也就是说,

2025-05-20 09:54:57 1376

原创 论文精读+复现:Motion Artifact Removal in Pixel-Frequency Domain via Alternate Masks and Diffusion Model

磁共振成像(MRI)中存在的运动伪影会严重干扰临床诊断。去除运动伪影是一个直接明了的解决方案,并且已经得到了广泛研究。然而,在近期的研究工作中仍然严重依赖成对数据,并且k空间(频域)中的扰动没有得到很好的考虑,这限制了它们在临床领域的应用。为了解决这些问题,我们提出了一种新颖的无监督净化方法,该方法利用有噪声的MRI图像的像素-频率信息来引导预训练的扩散模型恢复清晰的MRI图像。具体来说,考虑到运动伪影主要集中在k空间的高频分量中,我们利用低频分量作为引导,以确保组织纹理的正确性。

2025-04-23 16:23:11 969

原创 超分文章—DVMSR模型开源代码分析讲解

输入 x (B,C,H,W)│▼residual_group(BasicLayer:多个 MambaBlock + MLP)│▼patch_unembed(还原为 H×W 特征图)│▼conv(1 或 3 层卷积做特征变换)│▼patch_embed(重新变为 patch 表示)│▼残差加法(+ x)│▼输出(与输入尺寸一致)RMMB(Residual Multi-layer Mamba Block)是 DVMSR 的核心特征提取模块。

2025-04-19 15:09:31 845

原创 快速测试代码:DVMSR—Distillated Vision Mamba for Efficient Super-Resolution(Docker+WSL2)

DVMSR代码的快速测试步骤

2025-04-19 10:44:53 652

原创 超分论文精读:DVMSR—Distillated Vision Mamba for Efficient Super-Resolution

我们提出了轻量级超分网络 DVMSR,结合 Vision Mamba 模块与蒸馏策略。网络由特征提取、多个残差状态空间块(RSSB)和重建模块构成,具备建模远程依赖的能力。通过引入教师模型监督,有效提升了学生模型性能。尽管本工作展示了 Mamba 在图像超分中的潜力,但仍有待进一步深入探索。

2025-04-14 10:08:14 1456

原创 超分论文:RCAN—Image Super-Resolution Using Very Deep Residual Channel Attention Networks

该论文提出了一种创新的极深残差通道注意力网络(RCAN),通过引入残差嵌套残差(RIR)结构和通道注意力机制,有效解决了图像超分辨率任务中深层网络训练困难的问题。RIR结构通过多级跳跃连接使网络能够绕过低频信息而专注学习高频细节,而通道注意力机制则通过动态调整通道特征权重显著提升了网络的表征能力。实验结果表明,该方法在超分辨率性能上超越了当时的先进技术,在定量指标和视觉质量上均取得了显著提升。

2025-04-13 15:35:58 1292

原创 超分论文:FSRCNN-Accelerating the Super-Resolution Convolutional Neural Network

作为一种成功应用于图像超分辨率(SR)的深度学习模型,超分辨率卷积神经网络(SRCNN)[1,2] 在速度和恢复质量上均优于以往的手工设计模型。然而,其高昂的计算成本仍阻碍了它在需要实时性能(24 fps)的实际场景中的应用。本文旨在加速当前的SRCNN,并提出一种紧凑的沙漏形CNN结构,以实现更快、更好的超分辨率重建。引入反卷积层:在网络末端加入反卷积层,直接从原始低分辨率图像(无需插值)学习到高分辨率图像的映射。重构映射层:在映射前缩减输入特征维度,映射后再扩展回高维,以降低计算量。优化滤波器配置。

2025-04-11 16:49:37 1208

原创 超分论文开山之作-SRCNN:Learning a Deep Convolutional Network for Image Super-Resolution

我们提出了一种用于单图像超分辨率(SR)的深度学习方法。我们的方法直接学习低分辨率图像与高分辨率图像之间的端到端映射关系。该映射关系由一个深度卷积神经网络(CNN)表示,它以低分辨率图像作为输入,并输出高分辨率图像。我们进一步指出,传统的基于稀疏编码的超分辨率方法也可以被视为一种深度卷积网络。然而,与传统方法分别处理每个组件不同,我们的方法联合优化所有层。我们的深度CNN具有轻量级结构,但展现了最先进的恢复质量,并且实现了快速的速度,适用于实际的在线使用。

2025-04-11 10:38:38 1165

原创 超分论文:DRRN—Image Super-Resolution via Deep Recursive Residual Network(VDSR/DRCN/DRRN)

最近,基于卷积神经网络 (CNN) 的模型在单图像超分辨率 (SISR) 方面取得了巨大成功。由于深度网络的优势,这些 CNN 模型学习了从低分辨率输入图像到高分辨率目标图像的有效非线性映射,但代价是需要大量的参数。本文提出了一种非常深的 CNN 模型(多达 52 个卷积层),称为深度递归残差网络 (DRRN),该模型致力于深度而简洁的网络。具体来说,以全局和局部方式采用残差学习,以减轻训练非常深的网络的难度;递归学习用于控制模型参数,同时增加深度。

2025-04-09 15:54:42 1200

原创 超分论文CARN——Fast, Accurate, and Lightweight Super-Resolution with Cascading Residual Network

研究背景近年来,深度学习方法在单幅图像超分辨任务中表现出色,但它们通常计算量大,难以应用于实际场景,特别是在资源受限的设备上(如手机、嵌入式系统等)。特点说明🎯 高准确率超分重建效果接近 SOTA💡 模块设计巧妙局部+全局级联机制,特征更丰富⚡ 高效率相比 RCAN、EDSR,FLOPs 更低📱 易部署有轻量变体 CARN-M,可部署在移动端。

2025-04-08 17:33:21 1060

原创 ESRT——开源代码解读

这段代码定义了ESRT:低分辨率图片 (x1:利用3x3卷积提取特征。通过Un模块提取深度特征。采用n_blocks=1,即只有一个Un结构(可能可以调整)。torch.cat连接不同Un结果,再用reduce压缩通道。通过Upsampler进行超分辨率上采样。self.up额外增加了一条上采样路径,与tail结果相加,提高效果。:高分辨率图片。①__init__初始化②forward前向传播③:加载模型权重。

2025-04-03 15:47:52 322

翻译 ESRT:Transformer for Single Image Super-Resolution

ESRT的核心创新在于它结合了卷积神经网络(CNN)和Transformer的优点,设计了一个混合模型,包含两个主要部分:文章指出,传统的视觉Transformer(如ViT)在计算成本和内存占用上较高,不太适合直接用于超分辨率任务。而ESRT通过优化设计,在保持竞争性能的同时大幅降低了资源需求。例如,与原始Transformer占用16,057M GPU内存相比,ESRT仅占用4,191M内存,同时在性能上仍有出色表现。ESRT的灵感来源于图像中相似区域可以相互参考的特性(类似基于参考的超分辨率方法),通

2025-04-02 10:01:19 135

原创 论文代码复现——ESRT

ps:只是用CPU训练迭代了5个epochs.1.先连接到google drive。8.运行(只是测试5个epoch)9. 5个epoch的运行结果。10.重新再运行的代码。

2025-04-01 14:50:17 185

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除