自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(22)
  • 收藏
  • 关注

原创 Java 网络编程

通过计算机网络可以实现不同计算机之间的连接与通信,但是计算机网络中实现通信必须有一些约定即通信协议,对速率、传输代码、代码结构、传输控制步骤、出错控制等制定标准。国际标准化组织(ISO,即International Organization for Standardization)定义了网络通信协议的基本框架,被称为OSI(Open System Interconnect,即开放系统互联)模型。

2025-06-03 23:07:46 708

原创 Java 多线程技术

本文介绍了Java多线程与并发编程的核心概念。主要内容包括:1. 进程与线程的区别:进程是操作系统资源分配的最小单位,线程是CPU调度的最小单位,一个进程可包含多个线程;2. 线程的创建方式:继承Thread类和实现Runnable接口;3. 线程的生命周期:新建、就绪、运行、阻塞和死亡五种状态;4. 线程同步机制:使用synchronized关键字解决共享资源冲突问题;5. 线程间通信:wait()/notify()机制实现生产者-消费者模式;6. 死锁问题及解决方案。文章还详细讲解了线程优先级、守护线程

2025-05-31 21:58:10 819

原创 Java IO流

装饰器模式是GOF23种设计模式中较为常用的一种模式。它可以实现对原有类的包装和装饰,使新的类具有更强的功能。装饰器模式System.out.println("我是" + name + ",可以在屏幕上显示");// 功能更强的方法System.out.println("还可以投影,在墙壁上显示");System.out.println("===============装饰后");IO流体系中的装饰器模式IO流体系中大量使用了装饰器模式,让流具有更强的功能、更强的灵活性。

2025-05-21 22:59:58 1050

原创 Java 容器(也叫集合(Collection))

创建Users对象@Override= null?在HashSet中存储Users对象//实例化HashSetset.add(u);类 java.util.Collections 提供了对Set、List、Map进行排序、填充、查找元素的辅助方法。方法名说明对List容器内的元素排序,排序规则是升序。对List容器内的元素进行随机排列对List容器内的元素进行逆续排列。

2025-05-20 17:15:41 738

原创 Java 常用类

每当自动装箱过程发生时(或者手动调用valueOf()时),就会先判断数据是否在该区间,如果在则直接获取数组中对应的包装类对象的引用,如果不在该区间,则会通过new调用包装类的构造方法来创建对象。因此可以在循环中使用。为了解决这个不足,Java在设计类时为每个基本数据类型设计了一个对应的类进行代表,这样八个和基本数据类型对应的类统称为包装类(Wrapper Class)。我们发现在前面学习String的某些方法,比如:substring()是对字符串的截取操作,但本质是读取原字符串内容生成了新的字符串。

2025-05-19 19:55:40 744

原创 Java 异常机制

在程序中,可能会遇到JDK提供的任何标准异常类都无法充分描述清楚我们想要表达的问题,这种情况下可以创建自己的异常类,即自定义异常类。自定义异常类只需从Exception类或者它的子类派生一个子类即可。自定义异常类如果继承Exception类,则为CheckedException异常,必须对其进行处理;如果不想处理,可以让自定义异常类继承运行时异常RuntimeException类。习惯上,自定义异常类应该包含2个构造器:一个是默认的构造器,另一个是带有详细信息的构造器。【示例】自定义异常类。

2025-05-18 16:47:00 610

原创 Java 数组和数据存储

该方法可以将src数组里的元素值赋给dest数组的元素,其中srcpos指定从src数组的第几个元素开始赋值,length参数指定 将src数组的多少个元素赋给dest数组的元素。二分法检索的基本思想是设数组中的元素从小到大有序地存放在数组(array)中,首先将给定值key与数组中间位置上元素的关键码(key)比较,如果相等,则检索成功;冒泡排序算法重复地走访过要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来,这样越大的元素会经由交换慢慢“浮”到数列的顶端。

2025-05-18 13:00:25 660

原创 Java 面向对象详解和JVM底层内存分析

都是解决问题的思维方式,都是代码组织的方式。

2025-05-17 23:36:11 1918

原创 Java的控制语句、方法、递归算法

先执行某语句, 再判断布尔表达式,如果为true,再执行某语句,如此反复,直到布尔表达式条件为false时才停止循环,比如do-while循环。当布尔表达式条件为true时,反复执行某语句,当布尔表达式的值为false时才停止循环,比如:while与for循环。循环结构会先执行循环体,然后再判断布尔表达式的值,若条件为真,执行循环体,当条件为假时结束循环。

2025-05-15 21:51:30 885

原创 Java 变量、数据类型、运算符

Java的 变量、数据类型、运算符

2025-05-15 16:05:05 1046

原创 Java开发环境搭建

入门学习时,进行简单的Java程序编写,我们可以使用文本编辑器,比如:记事本。path是一个常见的环境变量,它告诉系统除了在当前目录下寻找此程序外,还可以到path指定的目录下寻找。计算机高级语言的类型主要有编译型和解释型两种,而Java 语言是两种类型的结合。C 不同的操作系统有不同版本JVM,屏蔽了底层运行平台的差别,是实现跨平台的核心。:选择JDK安装目录,采用默认即可(如果一定要自定义,不要包含中文路径)当然,也可以使用8以上的其他版本。对于IDE的选用,真的是无所谓的,大家不用太过纠结。

2025-05-14 23:00:23 863

原创 Shell脚本

​。

2025-05-14 15:18:58 321

原创 Linux理解

是linux的根目录。

2025-04-26 16:19:02 918

原创 安装vm15和linux(centos7)系统

快速安装vm以及linux

2025-04-24 14:36:10 399

原创 基于卷积神经网络的食物图像分类问题

可以借助预训练模型(如ResNet、VGG等)在大规模数据集(如ImageNet)上的特征提取能力,解决小样本(有标签数据有限)场景下的模型训练问题。能够充分利用项目中的无标签数据,通过自训练(Self-training)、伪标签(Pseudo-labeling)或一致性正则化(Consistency Regularization)等方法,提升模型泛化能力。两者的结合既弥补了有标签数据不足的缺陷,又通过迁移学习加速了模型收敛,提高了分类精度。

2025-03-23 17:09:36 800

原创 自然语言处理与Bert的了解

RNN和LSTM是基于循环结构的神经网络,主要用于处理序列数据中的时间依赖关系,而Transformer是基于自注意力机制的神经网络,能够更高效地处理长序列数据并捕捉长距离依赖关系。虽然Transformer在许多任务中表现优于RNN和LSTM,但它们在某些特定场景下仍然有其独特的优势和应用价值。

2025-03-23 11:13:25 1809

原创 对lora改进的bert的外卖评论情感分类系统的问题总结

bert-base-chinese是谷歌发布的预训练中文BERT模型,12层Transformer编码器,768隐藏维度,12个注意力头。

2025-03-19 23:48:00 912

原创 Transformer理解

Transformer 架构通过自注意力机制和编码器-解码器结构,极大地提高了模型的并行计算能力和对长距离依赖的处理能力,成为现代 NLP 模型的基础。尽管 Transformer 存在一些局限性,但其强大的表达能力和可扩展性使其在各种任务中表现出色,并催生了众多变体和扩展模型。

2025-02-18 22:29:13 1451

原创 机器学习:分类任务(图片分类)

本文主要介绍了分类任务中的关键概念和实现方法,特别是图片分类任务。分类任务中,真实值使用独热编码表示,预测值与真实值通过交叉熵损失函数计算差异。与回归任务不同,分类任务输出的是类别概率分布。图片分类任务中,由于全连接层参数过多,通常使用卷积神经网络(CNN)来减少过拟合风险。卷积神经网络通过卷积核提取特征,并通过池化层降低特征图尺寸。文章还详细介绍了卷积核的计算方法、卷积层参数量的计算以及卷积尺寸的公式。此外,文章还提到了经典的图片分类模型如AlexNet、VggNet和ResNet,并对比了它们的结构和特

2025-02-15 21:06:53 896

原创 机器学习:回归实战(外网的一个新冠的预测)

7.1首先我们整个项目的目的是为了得到一个好的模型(而这个模型能够预测到一个好的y),为了得到这个模型我们做了什么:1.准备了一批数据x,y让x通过模型得到预测值y然后他和真实值y两个之间的差距来得到loss从而去改变我们的模型然后再这样一轮一轮的更新。每次循环取一批数据出来经过f得到y然后和真实值得到loss取更新模型,直到将数据取完后这就完成了一个epoch,而一个模型训练需要训练很多epoch。7.2.Linear()表示全连接,可以进行维度的改变!

2025-01-19 23:02:28 1933

原创 初识神经网络代码

得到最终的预测输出。

2025-01-12 23:15:24 563

原创 机器学习与深度学习(自己学习分享)

在这就是看出前面的数字变大后面也在变大所以考虑是一个线性函数。weight即权重,bias即偏差,L(w,b)就是损失函数2.计算loss:即loss的值相加后就平均值。

2024-12-31 16:51:36 397

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除