子序列问题是动态规划解决的经典问题
dp[i]表示i之前包括i的以nums[i]结尾的最长递增子序列的长度,本题最关键的是要想到dp[i]由哪些状态可以推出来,并取最大值,那么很自然就能想到递推公式:dp[i] = max(dp[i], dp[j] + 1);
int lengthOfLIS(vector<int>& nums) {
if(nums.size()<=1) return nums.size();
int result = 1;
vector<int> dp(nums.size(), 1);
// dp[i] 表示i之前包括i的以nums[i]结尾最长上升子序列的长度
for (int i = 1; i < nums.size(); i++)
{
for (int j = 0; j < i;j++){
if(nums[i]>nums[j])
dp[i] = max(dp[i], dp[j] + 1);
}
if(result<dp[i])
result = dp[i];
}
return result;
}
2.674. 最长连续递增序列 - 力扣(LeetCode)
方法一:我的复杂做法,运用了两层循环,之所以做的这么麻烦,是因为刚刚做完上面的题目,有了思维定势。
int findLengthOfLCIS(vector<int>& nums) {
if(nums.size()<=1)
return nums.size();
vector<int> dp(nums.size(), 1);
int result = 1;
int temp = 0;
for (int i = 1; i < nums.size(); i++)
{
if(nums[i]<=nums[i-1]){
temp = i;
continue;
}
for (int j = temp; j < i;j++){
if(nums[i]>nums[j]){
dp[i] = max(dp[i], dp[j] + 1);
}
}
if(dp[i]>result)
result = dp[i];
}
return result;
}
方法二:一层循环的动态规划:但其实,既然是连续递增序列,所以如果 nums[i] > nums[i - 1],
那么dp[i] = dp[i - 1] + 1;就不需要还像第一题一样,用两层for分别遍历。
int findLengthOfLCIS(vector<int>& nums) {
if(nums.size()<=1)
return nums.size();
vector<int> dp(nums.size(), 1);
int result = 1;
int temp = 0;
for (int i = 1; i < nums.size(); i++)
{
if(nums[i]<=nums[i-1]){
temp = i;
continue;
}
for (int j = temp; j < i;j++){
if(nums[i]>nums[j]){
dp[i] = max(dp[i], dp[j] + 1);
}
}
if(dp[i]>result)
result = dp[i];
}
return result;
}
方法三:贪心算法
本题贪心相比动态规划而言,要简单不少。因为只需要记录最大的cnt就可以,每一次循环都去判断是不是递增的,如果是递增的,直接在前面的基础之上累加,反之如果不是递增的,直接赋1。
int findLengthOfLCIS(vector<int>& nums) {
if(nums.size()<=1)
return nums.size();
int cnt = 1;
int result = 1;
for (int i = 1; i < nums.size(); i++)
{
if(nums[i]>nums[i-1]){
cnt++;
}else
cnt = 1;
if(cnt>result)
result = cnt;
}
return result;
}
思路1:动态规划
但是通过代码可以发现,dp[i][j] = dp[i - 1][j - 1] + 1是递推公式。所以对于dp[i][0]或者dp[0][j]都是没有意义的,所以dp数组的含义要定义为:dp[i][j],以下标i - 1为结尾的A,和以下标j - 1为结尾的B,最长重复子数组长度为dp[i][j]。
int findLength(vector<int>& nums1, vector<int>& nums2) {
int m = nums1.size();
int n = nums2.size();
vector<vector<int>> dp(m + 1, vector<int>(n + 1, 0));
//dp[i][j]表示对应位置的最长子序列。
int result = 0;
for (int i = 1;i<=m;i++){
for (int j = 1;j<=n;j++){
if (nums1[i-1] == nums2[j-1]){
dp[i][j] = dp[i-1][j-1] + 1;
}
if (dp[i][j] > result) result = dp[i][j];
}
}
return result;
}
dp[i][j]都是由dp[i - 1][j - 1]推出。那么压缩为一维数组,也就是dp[j]都是由dp[j - 1]推出。此时遍历B数组的时候,就要从后向前遍历,这样避免重复覆盖。
int findLength(vector<int> &nums1, vector<int> &nums2)
{
vector<int> dp(nums2.size() + 1, 0);
int result = 0;
for (int i = 1; i <= nums1.size(); i++)
{
for (int j = nums2.size(); j > 0; j--)
{
if (nums1[i - 1] == nums2[j - 1])
{
dp[j] = dp[j - 1] + 1;
}
else
dp[j] = 0;
if (dp[j] > result)
{
result = dp[j];
}
}
}
return result;
}