代码随想录算法训练营第43天|leetcode300.最长递增子序列、leetcode674.最长连续递增序列、leetcode.最长重复字数组

1.300. 最长递增子序列 - 力扣(LeetCode)

子序列问题是动态规划解决的经典问题
dp[i]表示i之前包括i的以nums[i]结尾的最长递增子序列的长度,本题最关键的是要想到dp[i]由哪些状态可以推出来,并取最大值,那么很自然就能想到递推公式:dp[i] = max(dp[i], dp[j] + 1);

    int lengthOfLIS(vector<int>& nums) {
        if(nums.size()<=1) return nums.size();
        int result = 1;
        vector<int> dp(nums.size(), 1);
        // dp[i] 表示i之前包括i的以nums[i]结尾最长上升子序列的长度
        for (int i = 1; i < nums.size(); i++)
        {
            for (int j = 0; j < i;j++){
                if(nums[i]>nums[j])
                    dp[i] = max(dp[i], dp[j] + 1);
            }
            if(result<dp[i])
                result = dp[i];
        }
        return result;
    }

2.674. 最长连续递增序列 - 力扣(LeetCode)

方法一:我的复杂做法,运用了两层循环,之所以做的这么麻烦,是因为刚刚做完上面的题目,有了思维定势。

int findLengthOfLCIS(vector<int>& nums) {
        if(nums.size()<=1)
            return nums.size();
        vector<int> dp(nums.size(), 1);
        int result = 1;
        int temp = 0;
        for (int i = 1; i < nums.size(); i++)
        {
            if(nums[i]<=nums[i-1]){
                temp = i;
                continue;
            }
            for (int j = temp; j < i;j++){
                if(nums[i]>nums[j]){
                    dp[i] = max(dp[i], dp[j] + 1);
                }
            }
            if(dp[i]>result)
                result = dp[i];
        }
        return result;
    }

方法二:一层循环的动态规划:但其实,既然是连续递增序列,所以如果 nums[i] > nums[i - 1]
那么dp[i] = dp[i - 1] + 1;就不需要还像第一题一样,用两层for分别遍历。

int findLengthOfLCIS(vector<int>& nums) {
        if(nums.size()<=1)
            return nums.size();
        vector<int> dp(nums.size(), 1);
        int result = 1;
        int temp = 0;
        for (int i = 1; i < nums.size(); i++)
        {
            if(nums[i]<=nums[i-1]){
                temp = i;
                continue;
            }
            for (int j = temp; j < i;j++){
                if(nums[i]>nums[j]){
                    dp[i] = max(dp[i], dp[j] + 1);
                }
            }
            if(dp[i]>result)
                result = dp[i];
        }
        return result;
    }

方法三:贪心算法

本题贪心相比动态规划而言,要简单不少。因为只需要记录最大的cnt就可以,每一次循环都去判断是不是递增的,如果是递增的,直接在前面的基础之上累加,反之如果不是递增的,直接赋1。

    int findLengthOfLCIS(vector<int>& nums) {
        if(nums.size()<=1)
            return nums.size();
        int cnt = 1;
        int result = 1;
        for (int i = 1; i < nums.size(); i++)
        {
            if(nums[i]>nums[i-1]){
                cnt++;
            }else
                cnt = 1;
        if(cnt>result)
            result = cnt;
        }
        return result;
    }

3.718. 最长重复子数组 - 力扣(LeetCode)

思路1:动态规划
但是通过代码可以发现,dp[i][j] = dp[i - 1][j - 1] + 1是递推公式。所以对于dp[i][0]或者dp[0][j]都是没有意义的,所以dp数组的含义要定义为:dp[i][j],以下标i - 1为结尾的A,和以下标j - 1为结尾的B,最长重复子数组长度为dp[i][j]。 

    int findLength(vector<int>& nums1, vector<int>& nums2) {
        int m = nums1.size();
        int n = nums2.size();
        vector<vector<int>> dp(m + 1, vector<int>(n + 1, 0));
        //dp[i][j]表示对应位置的最长子序列。
        int result = 0;
        for (int i = 1;i<=m;i++){
            for (int j = 1;j<=n;j++){
                if (nums1[i-1] == nums2[j-1]){
                    dp[i][j] = dp[i-1][j-1] + 1;
                }
                if (dp[i][j] > result) result = dp[i][j];
            }
        }
        return result;
    }

dp[i][j]都是由dp[i - 1][j - 1]推出。那么压缩为一维数组,也就是dp[j]都是由dp[j - 1]推出。此时遍历B数组的时候,就要从后向前遍历,这样避免重复覆盖

int findLength(vector<int> &nums1, vector<int> &nums2)
    {

        vector<int> dp(nums2.size() + 1, 0);
        int result = 0;
        for (int i = 1; i <= nums1.size(); i++)
        {
            for (int j = nums2.size(); j > 0; j--)
            {
                if (nums1[i - 1] == nums2[j - 1])
                {
                    dp[j] = dp[j - 1] + 1;
                }
                else
                    dp[j] = 0;
                if (dp[j] > result)
                {
                    result = dp[j];
                }
            }
        }
        return result;
    }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值