
算法·MEGA
文章平均质量分 86
超华东算法王
微信号:yoggyzh
重磅推出:更新ing:Java难点解读,百战大厂面试; 即将更新系列:自传统编程:rust语言之旅,go语言之旅,c#语言之旅,swift语言之旅,oc语言之旅,Lua语言之旅 黑皮书之旅1:算法导论,neo4j之旅,redis之旅;python高级:opencv3.0,chatgpt,LLM,python-WEB,数据开发,web安全,SQL高级,大数据基础,linux高级,hadoop技术栈,hive
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
【算法·MEGA-24】树的前中后序遍历
树的遍历(Traversal)是访问树中每个节点的过程,通常用于各种树形结构的遍历,如二叉树、B树、红黑树等。和。这些遍历方法可以采用或的方式来实现。在实际应用中,非递归的实现方式更常用于避免栈溢出或为了节省递归调用的开销。。也就是首先访问根节点,然后依次遍历左子树,再遍历右子树。非递归前序遍历通常使用来模拟递归过程。。在二叉树中,中序遍历通常用于有序输出(例如二叉搜索树)。非递归中序遍历需要利用栈来模拟递归。None。后序遍历在一些树的操作中很有用,比如销毁树或释放内存。原创 2024-11-28 09:52:24 · 344 阅读 · 0 评论 -
【算法·MEGA-23】贪心公式
贪心算法通过选择局部最优解来构造全局最优解。推公式的关键在于定义合适的贪心选择准则,证明每一步的选择不违反问题的最优解构造性质。通过适当的推导过程和交换证明,可以证明贪心算法在某些问题中能够找到最优解。原创 2024-11-28 09:50:10 · 859 阅读 · 0 评论 -
【算法·MEGA-22】绝对值不等式
绝对值不等式是一类非常重要的数学工具,它描述了数值之间的距离关系,并且广泛应用于各个领域。其核心思想是通过将数值的符号剔除,只关注数值的大小,来推导出数值之间的约束关系。掌握绝对值不等式的求解方法对于解决实际问题中的范围约束、误差分析和最优化问题等具有重要意义。原创 2024-11-28 09:49:30 · 929 阅读 · 0 评论 -
【算法·MEGA-21】排序不等式
排序不等式是理论数学和计算机科学中的一个重要工具,尤其在涉及优化、数据分析和算法设计的问题中非常有用。通过对元素进行排序,我们可以利用排序不等式推导出许多有意义的数学结论,这些结论通常有助于解决最优化问题、推导算法的时间复杂度、进行数据压缩等。原创 2024-11-28 09:48:58 · 769 阅读 · 0 评论 -
【算法·MEGA-20】Huffman树
霍夫曼树是无损数据压缩中常用的编码方式,通过根据字符的频率生成最优的二进制编码,能够有效地减少数据的存储空间。它的构建过程包括统计字符频率、构造霍夫曼树、生成编码等步骤,具有较高的压缩效率和理论上的最优性。虽然霍夫曼编码存在一定的局限性(如静态性和存储开销),但它仍然是压缩技术中非常重要且广泛应用的一部分。原创 2024-11-28 09:48:23 · 807 阅读 · 0 评论 -
【算法·MEGA-19】贪心-区间
贪心算法在区间问题中的应用非常广泛,特别适合那些可以通过局部最优选择得到全局最优解的问题。通过贪心算法,我们可以高效地解决如活动选择、合并重叠区间、区间覆盖等问题。常见的贪心策略包括选择结束时间最早的区间、选择覆盖最远端的区间等。在解决这些问题时,贪心算法的时间复杂度通常较低(例如 O(nlogn)O(n \log n)),使得它在大规模数据下仍然能够高效执行。原创 2024-11-28 09:47:27 · 1073 阅读 · 0 评论 -
【算法·MEGA-18】动态规划-记忆化搜索
记忆化搜索是一种非常强大的技术,适用于动态规划问题的递归解法中,通过缓存中间结果来避免重复计算。它可以显著提高问题求解的效率,特别是在具有重叠子问题的情况下。与动态规划相比,记忆化搜索更容易实现,但在性能上可能不如底层迭代的动态规划,尤其在问题规模较大时。原创 2024-11-28 09:46:48 · 1016 阅读 · 0 评论 -
【算法·MEGA-17】动态规划-状态压缩DP
状态压缩动态规划(State Compression DP) 是一种优化动态规划算法的方法,特别适用于状态空间较大的问题。通过将状态信息压缩为较小的表示,减少内存占用并提高算法的效率。这种方法常用于求解某些状态空间是集合或者组合类型的问题,尤其是在状态较为复杂的情况下。状态压缩DP的核心思想是 将状态压缩成一个较小的数据结构,通常是通过二进制位表示来减少空间复杂度。状态空间较大时,直接存储所有状态的方案可能会占用大量内存,而通过压缩,可以减少内存占用。状态压缩DP常用于以下几类问题:问题描述:给定一组城市以原创 2024-11-28 09:46:00 · 1490 阅读 · 0 评论 -
【算法·MEGA-16】动态规划-数位统计
数位统计动态规划(Digit DP) 是一种用于解决与数字的各个位置相关的动态规划问题的方法。通常应用于 数值范围内的计数问题,特别是当问题涉及到某个范围内所有数字的组合,且需要考虑数字的每一位的特性时。这种方法特别适用于涉及数字的位数、数字的大小、以及数字在某个范围内的数量的计数问题。数位统计DP的基本思路是:数位DP通过考虑每一位的选择,维护一个状态,递归地计算出符合条件的数字个数。这种方法能够有效地解决一些与数字的每一位有关的计数问题。数位统计DP主要用来解决一些常见的数位限制问题,例如:以下是一些典原创 2024-11-28 09:45:23 · 835 阅读 · 0 评论 -
【算法·MEGA-15】动态规划-计数类DP
计数类动态规划(Counting DP) 是动态规划中的一种应用,通常用于计算满足某些条件的组合数量或特定状态的数量,而不是具体的数值大小。计数类 DP 问题的核心思想是通过递推计算可能的组合、排列或状态的数量,并通过状态转移方程累加这些数量。计数类 DP 问题通常用于以下类型的场景:计数类 DP 的基本思想是将问题分解为子问题,通过递推得到总的计数。与普通的 DP 问题不同,计数类 DP 关心的是 状态的数量,而不是最优解的值。通过累加每个子问题的解,我们可以得到最终的结果。在经典的 0-1 背包问题中,原创 2024-11-28 09:44:43 · 1049 阅读 · 0 评论 -
【算法·MEGA-14】DP-区间DP
首先需要明确每个状态的含义,通常状态涉及到一个区间,表示在某个区间上进行的最优操作。原创 2024-11-28 09:43:37 · 897 阅读 · 0 评论 -
【算法·MEGA-13】DP-滚动数组优化
滚动数组优化是一种常见的空间优化技巧,适用于许多动态规划问题,尤其是当每个状态仅依赖于前几个状态时。通过减少存储空间(从二维数组降为一维数组),滚动数组能够显著降低空间复杂度。其核心思想是利用。原创 2024-11-28 09:43:05 · 839 阅读 · 0 评论 -
【算法·MEGA-12】DP-线性DP
线性动态规划(Linear Dynamic Programming,简称线性DP)是一种用于求解具有重叠子问题和最优子结构性质的优化问题的算法。动态规划(DP)是一种通过将大问题分解为小问题来解决复杂问题的策略,而线性动态规划指的是在DP的求解过程中,问题的状态转移满足线性递推关系,且一般情况下,状态空间的大小与问题规模成线性关系。动态规划的核心思想是:线性动态规划通常有以下特点:以下是几个典型的可以用线性动态规划求解的问题:斐波那契数列的定义是:F(0)=0,F(1)=1F(0) = 0, \quad F原创 2024-11-28 09:42:25 · 551 阅读 · 0 评论 -
【算法·MEGA-11】DP-背包问题
0-1 背包问题:每个物品只能选择一次,使用动态规划解决。完全背包问题:每个物品可以选择多次,动态规划求解。多重背包问题:每个物品可以选择一定次数,动态规划解决。分数背包问题:物品可以分割,采用贪心算法解决。多维背包问题:考虑多个约束条件,使用多维动态规划求解。不同的背包问题适用于不同的实际场景,通过合理选择算法,可以高效解决各种资源分配、优化问题。原创 2024-11-28 09:41:47 · 889 阅读 · 0 评论 -
【算法·MEGA-10】博弈论
博弈论是研究在具有相互依赖的决策情况下,个体如何做出最佳决策的一门数学理论。它的核心问题是通过数学模型来分析个体之间(称为“博弈者”)在各种博弈情境中的行为和策略选择。博弈论广泛应用于经济学、政治学、社会学、军事学以及生物学等多个领域,帮助解释和预测不同决策者在相互作用中的行为模式。博弈论的目标通常是找到博弈者之间的最优策略,即使他们在面对竞争或合作时,都能通过分析对方的选择来优化自己的决策。博弈论是理解个体在相互依赖的决策环境中的行为和策略的重要工具,广泛应用于经济学、政治学、社会学等多个领域。原创 2024-11-27 10:17:41 · 948 阅读 · 0 评论 -
【算法·MEGA-9】求组合数的多种手段
由于阶乘的计算会产生非常大的数字,这种方法在计算机中可能会遇到整数溢出的情况,尤其是对于大 nn 和 kk。组合数 C(n,k)C(n, k) 表示从 nn 个不同的元素中选择 kk 个元素的不同方法数。是 kk 的阶乘,表示从 kk 个元素中选出所有元素的排列数。由于递推公式只依赖于当前行和上一行的值,因此我们可以通过优化空间复杂度,仅使用两个一维数组来存储当前和上一行的组合数,从而避免创建一个二维数组。这个函数的实现是通过高效的算法实现的,避免了手动实现递推、阶乘等方法。原创 2024-11-27 10:17:00 · 810 阅读 · 0 评论 -
【算法·MEGA-8】容斥原理
容斥原理是一个非常强大的工具,用来处理并集的计数问题,尤其是在涉及多个集合时。它通过加法和减法来避免重复计数交集部分,因此是解决各种计数和概率问题的重要方法。原创 2024-11-27 10:16:00 · 686 阅读 · 0 评论 -
【算法·MEGA-7】gauss消元
高斯消元法是一种标准的线性方程组求解方法,广泛应用于数学、物理、工程等领域。其主要思想是通过一系列的行变换将增广矩阵转化为上三角形矩阵,之后通过回代求解未知数。高斯消元法时间复杂度为 O(n3)O(n^3),对于中等规模的线性方程组非常有效。原创 2024-11-27 10:15:23 · 710 阅读 · 0 评论 -
【算法·MEGA-6】中国剩余定理
mkm_1, m_2, \dots, m_k 是两两互质的正整数(即对于任意两个 i≠ji \neq j,有 gcd(mi,mj)=1\text{gcd}(m_i, m_j) = 1),那么中国剩余定理保证,存在唯一的解 xx 满足上述所有同余条件。通过构造一个解的表达式,可以求得唯一的解 xx,这个解在所有模数的乘积模下是唯一的。中国剩余定理的核心思想是:如果我们有多个模数,它们两两互质(即它们的最大公约数是 1),那么就存在一个唯一的解,满足这些同余条件,并且这个解是模所有模数的最小非负解。原创 2024-11-27 10:04:18 · 709 阅读 · 0 评论 -
【算法·MEGA-5】扩展欧几里得算法
扩展欧几里得算法是欧几里得算法的扩展,不仅可以计算两个数的最大公约数(GCD),还能够计算出满足线性组合关系 ax+by=gcd(a,b)ax + by = \text{gcd}(a, b) 的整数解 xx 和 yy。其时间复杂度为 O(log(min(a,b)))O(\log(\min(a, b))),在求解线性同余方程、模反元素和中国剩余定理等问题中有广泛的应用。从而将 gcd(a,b)\text{gcd}(a, b) 表示为 aa 和 bb 的线性组合。其中 qq 是商,rr 是余数。原创 2024-11-27 10:00:19 · 583 阅读 · 0 评论 -
【算法·MEGA-4】快速幂
快速幂是一种高效的算法,主要用于计算大整数的幂,特别是模幂运算。通过递归或迭代的方式,快速幂能够将时间复杂度从 O(b)O(b) 降到 O(logb)O(\log b),大大提高了计算效率。通过“分治”思想,我们可以快速地将一个大的幂运算分解成多个小的幂运算。它通过将幂运算分解成较小的部分来减少运算量,从而显著提高计算效率,特别是在处理大指数时。通过递归或迭代的方式不断减少幂的计算。迭代实现通过模拟递归的过程,但是使用循环来实现,避免了递归栈的深度问题。:通过对指数进行二进制分解,递归或迭代地计算幂。原创 2024-11-27 09:59:36 · 311 阅读 · 0 评论 -
【算法·MEGA-3】欧拉函数
欧拉函数是数论中非常重要的函数之一,它在密码学、加密算法、同余方程等许多领域都有广泛的应用。通过质因数分解来计算欧拉函数,我们可以高效地求解许多与整数互质的问题。它的定义非常直观,而应用却深刻且重要。原创 2024-11-27 09:58:55 · 999 阅读 · 0 评论 -
【算法·MEGA-2】约数问题
是一类用于求解一个数的所有约数、判断某个数是否能被其他数整除,以及一些涉及约数性质的经典算法。约数是指可以整除某个整数的所有整数。以下是一些常见的约数相关算法及其 C++ 实现。对于一个整数 nn,其约数包括所有能够整除 nn 的正整数。一个直观的做法是从 1 到 nn 依次检查每个数是否能整除 nn,但这样效率较低。我们可以通过优化方法,只检查到 n\sqrt{n},减少检查次数。是指除了数字本身外,能整除该数字的所有约数。与普通约数不同,真约数不包括 nn 本身。原创 2024-11-27 09:55:15 · 620 阅读 · 0 评论 -
【算法·MEGA】质数
质数相关算法是计算和处理质数(也叫素数)的一系列方法。质数是大于 1 且只能被 1 和其本身整除的自然数。常见的质数相关算法包括:判断一个数是否为质数、列出某个范围内的所有质数、素数筛法(如埃拉托斯特尼筛法)等。判断一个数是否为质数的基本思路是:如果一个数 nn 不能被从 2 到 n\sqrt{n} 之间的任何整数整除,那么 nn 就是质数。质数因数分解是将一个整数分解为若干个质数的乘积。是一种用于找出指定范围内所有质数的高效算法。它的基本思想是:从 2 开始,将所有倍数标记为非质数,直到范围的平方根。原创 2024-11-27 09:54:32 · 425 阅读 · 0 评论