- 博客(12)
- 收藏
- 关注
原创 J2:ResNet-50v2算法实战与解析 - 鸟类识别
else:else:return xreturn xreturn x本次数据导入不使用torchvision自带的数据集,而是从原始数据中进行处理。这包括数据的加载、分类情况的检查、定义转换操作(transforms)以及数据类型的转换等。训练函数接受四个参数:设置好的DataLoader、定义好的模型、损失函数和优化器。在函数内部,首先初始化损失和准确率为0,然后进入循环,从DataLoader获取一个批次的数据,将其输入模型以获得预测值,并利用损失函数计算损失。
2024-10-18 21:05:48
1205
原创 J1:ResNet-50算法实战与解析
IdentityBlock 和 ConvBlock 定义return xreturn x# ResNet50模型定义return x# 初始化模型# 定义损失函数和优化器。
2024-10-11 21:35:16
290
原创 P9:YOLOv5-Backbone模块实现
在YOLOv5 Backbone的基础上,可以尝试对卷积层、残差模块、SPPF等进行微调或增加,例如引入注意力机制(如CBAM或SE模块)来提升特征提取能力。:在网络深度和宽度上进行调整,参考VGG的深度网络结构,增加层数或调整每层的通道数,或使用稀疏连接(如DenseNet的密集连接)提升特征的多样性。在结果可视化方面,通过绘制损失和准确率的曲线,并对模型进行详细评估,将能更好地展示实验成果。:考虑在识别任务中引入特定损失函数,如加权交叉熵损失,用于处理数据不平衡或更复杂的分类任务。
2024-09-20 17:01:33
397
原创 P4:猴痘病识别(图片识别)
首先还是配置环境,与之前代码相同,不再附录;glob()data_dirdata_pathssplit()data_paths划分数据集。
2024-08-16 17:36:14
309
原创 P2:CIFAR10彩色图片识别
二、导入数据使用dataset下载CIFAR10数据集,划分好训练集与测试集;使用dataloader加载数据,设置好基本的batch_size三、数据可视化对于其中的transpose(C, H, W)CHW(C, H, W)(H, W, C)可视化结果为从CIFAR10数据集中取出的随机排列的图片对于普通CNN网络,都是由特征提取网络和分类网络构成,按作用看特征提取网络用语提取图片的特征,分类网络用于将图片进行分类。
2024-08-02 16:54:04
416
原创 P1:实现mnist手写数字识别
二、导入数据根据项目要求将MNIST数据集导入并划分训练集与测试集,用dataset下载,dataloader加载数据,设置基本batch_size此处1.train_dl是pytorch数据加载器的一种,用于加载训练数据集。通常加载器将数据集分成小批量batches进行处理;2.iter(train_dl)将数据加载器转换为迭代器iterator,使可使用next()函数访问数据加载器中的元素;3.next()函数用于获取迭代器中的下一个元素,此处获取的是train_dl中的下一个批量数据;
2024-07-26 19:49:59
388
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人