第P7周:马铃薯病害识别(VGG-16复现)

>- **🍨 本文为[🔗365天深度学习训练营](https://mp.weixin.qq.com/s/Z9yL_wt7L8aPOr9Lqb1K3w) 中的学习记录博客**
>- **🍖 原作者:[K同学啊](https://mtyjkh.blog.csdn.net/)**

我的环境:Anaconda

编译器:pytorch

一、 前期准备

设置GPU与之前操作相同,不再赘述

 导入数据:

import os,PIL,random,pathlib

data_dir = './PotatoPlants/'#根据自己情况修改路径
data_dir = pathlib.Path(data_dir)

data_paths  = list(data_dir.glob('*'))
classeNames = [str(path).split("\\")[1] for path in data_paths]
classeNames
# 关于transforms.Compose的更多介绍可以参考:https://blog.csdn.net/qq_38251616/article/details/124878863
train_transforms = transforms.Compose([
    transforms.Resize([224, 224]),  # 将输入图片resize成统一尺寸
    # transforms.RandomHorizontalFlip(), # 随机水平翻转
    transforms.ToTensor(),          # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间
    transforms.Normalize(           # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛
        mean=[0.485, 0.456, 0.406], 
        std=[0.229, 0.224, 0.225])  # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。
])

test_transform = transforms.Compose([
    transforms.Resize([224, 224]),  # 将输入图片resize成统一尺寸
    transforms.ToTensor(),          # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间
    transforms.Normalize(           # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛
        mean=[0.485, 0.456, 0.406], 
        std=[0.229, 0.224, 0.225])  # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。
])

total_data = datasets.ImageFolder("./PotatoPlants/",transform=train_transforms)
total_data
total_data.class_to_idx

运行结果:

{'Early_blight': 0, 'Late_blight': 1, 'healthy': 2}

划分数据集:

train_size = int(0.8 * len(total_data))
test_size  = len(total_data) - train_size
train_dataset, test_dataset = torch.utils.data.random_split(total_data, [train_size, test_size])
train_dataset, test_dataset
batch_size = 32

train_dl = torch.utils.data.DataLoader(train_dataset,
                                           batch_size=batch_size,
                                           shuffle=True,
                                           num_workers=1)
test_dl = torch.utils.data.DataLoader(test_dataset,
                                          batch_size=batch_size,
                                          shuffle=True,
                                          num_workers=1)
for X, y in test_dl:
    print("Shape of X [N, C, H, W]: ", X.shape)
    print("Shape of y: ", y.shape, y.dtype)
    break

运行结果:

Shape of X [N, C, H, W]:  torch.Size([32, 3, 224, 224])
Shape of y:  torch.Size([32]) torch.int64

二、搭建VGG-16模型

以下是VGG-16的主要特点:

  1. 深度:VGG-16由16个卷积层和3个全连接层组成,因此具有相对较深的网络结构。这种深度有助于网络学习到更加抽象和复杂的特征。
  2. 卷积层的设计:VGG-16的卷积层全部采用3x3的卷积核和步长为1的卷积操作,同时在卷积层之后都接有ReLU激活函数。这种设计的好处在于,通过堆叠多个较小的卷积核,可以提高网络的非线性建模能力,同时减少了参数数量,从而降低了过拟合的风险。
  3. 池化层:在卷积层之后,VGG-16使用最大池化层来减少特征图的空间尺寸,帮助提取更加显著的特征并减少计算量。
  4. 全连接层:VGG-16在卷积层之后接有3个全连接层,最后一个全连接层输出与类别数相对应的向量,用于进行分类。

VGG-16结构说明:

  • 13个卷积层(Convolutional Layer),分别用blockX_convX表示;
  • 3个全连接层(Fully connected Layer),用classifier表示;
  • 5个池化层(Pool layer)
    import torch.nn.functional as F
    
    class vgg16(nn.Module):
        def __init__(self):
            super(vgg16, self).__init__()
            # 卷积块1
            self.block1 = nn.Sequential(
                nn.Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
                nn.ReLU(),
                nn.Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
                nn.ReLU(),
                nn.MaxPool2d(kernel_size=(2, 2), stride=(2, 2))
            )
            # 卷积块2
            self.block2 = nn.Sequential(
                nn.Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
                nn.ReLU(),
                nn.Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
                nn.ReLU(),
                nn.MaxPool2d(kernel_size=(2, 2), stride=(2, 2))
            )
            # 卷积块3
            self.block3 = nn.Sequential(
                nn.Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
                nn.ReLU(),
                nn.Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
                nn.ReLU(),
                nn.Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
                nn.ReLU(),
                nn.MaxPool2d(kernel_size=(2, 2), stride=(2, 2))
            )
            # 卷积块4
            self.block4 = nn.Sequential(
                nn.Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
                nn.ReLU(),
                nn.Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
                nn.ReLU(),
                nn.Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
                nn.ReLU(),
                nn.MaxPool2d(kernel_size=(2, 2), stride=(2, 2))
            )
            # 卷积块5
            self.block5 = nn.Sequential(
                nn.Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
                nn.ReLU(),
                nn.Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
                nn.ReLU(),
                nn.Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
                nn.ReLU(),
                nn.MaxPool2d(kernel_size=(2, 2), stride=(2, 2))
            )
          
    
            # 全连接网络层,用于分类
            self.classifier = nn.Sequential(
                nn.Linear(in_features=512*7*7, out_features=4096),
                nn.ReLU(),
                nn.Linear(in_features=4096, out_features=4096),
                nn.ReLU(),
                nn.Linear(in_features=4096, out_features=3)
            )
    
        def forward(self, x):
    
            x = self.block1(x)
            x = self.block2(x)
            x = self.block3(x)
            x = self.block4(x)
            x = self.block5(x)
            x = torch.flatten(x, start_dim=1)
            x = self.classifier(x)
    
            return x
    
    device = "cuda" if torch.cuda.is_available() else "cpu"
    print("Using {} device".format(device))
      
    
    model = vgg16().to(device)
    model

    运行结果:

    Using cuda device
    
    vgg16(
      (block1): Sequential(
        (0): Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (1): ReLU()
        (2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (3): ReLU()
        (4): MaxPool2d(kernel_size=(2, 2), stride=(2, 2), padding=0, dilation=1, ceil_mode=False)
      )
      (block2): Sequential(
        (0): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (1): ReLU()
        (2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (3): ReLU()
        (4): MaxPool2d(kernel_size=(2, 2), stride=(2, 2), padding=0, dilation=1, ceil_mode=False)
      )
      (block3): Sequential(
        (0): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (1): ReLU()
        (2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (3): ReLU()
        (4): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (5): ReLU()
        (6): MaxPool2d(kernel_size=(2, 2), stride=(2, 2), padding=0, dilation=1, ceil_mode=False)
      )
      (block4): Sequential(
        (0): Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (1): ReLU()
        (2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (3): ReLU()
        (4): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (5): ReLU()
        (6): MaxPool2d(kernel_size=(2, 2), stride=(2, 2), padding=0, dilation=1, ceil_mode=False)
      )
      (block5): Sequential(
        (0): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (1): ReLU()
        (2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (3): ReLU()
        (4): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (5): ReLU()
        (6): MaxPool2d(kernel_size=(2, 2), stride=(2, 2), padding=0, dilation=1, ceil_mode=False)
      )
      (classifier): Sequential(
        (0): Linear(in_features=25088, out_features=4096, bias=True)
        (1): ReLU()
        (2): Linear(in_features=4096, out_features=4096, bias=True)
        (3): ReLU()
        (4): Linear(in_features=4096, out_features=3, bias=True)
      )
    )

    三、 训练模型

    1. 编写训练函数

    # 训练循环
    def train(dataloader, model, loss_fn, optimizer):
        size = len(dataloader.dataset)  # 训练集的大小
        num_batches = len(dataloader)   # 批次数目, (size/batch_size,向上取整)
    
        train_loss, train_acc = 0, 0  # 初始化训练损失和正确率
      
    
        for X, y in dataloader:  # 获取图片及其标签
            X, y = X.to(device), y.to(device)
          
    
            # 计算预测误差
            pred = model(X)          # 网络输出
            loss = loss_fn(pred, y)  # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失
          
    
            # 反向传播
            optimizer.zero_grad()  # grad属性归零
            loss.backward()        # 反向传播
            optimizer.step()       # 每一步自动更新
          
    
            # 记录acc与loss
            train_acc  += (pred.argmax(1) == y).type(torch.float).sum().item()
            train_loss += loss.item()
              
    
        train_acc  /= size
        train_loss /= num_batches
    
        return train_acc, train_loss

    2. 编写测试函数

  • def test (dataloader, model, loss_fn):
        size        = len(dataloader.dataset)  # 测试集的大小
        num_batches = len(dataloader)          # 批次数目, (size/batch_size,向上取整)
        test_loss, test_acc = 0, 0
      
    
        # 当不进行训练时,停止梯度更新,节省计算内存消耗
        with torch.no_grad():
            for imgs, target in dataloader:
                imgs, target = imgs.to(device), target.to(device)
              
    
                # 计算loss
                target_pred = model(imgs)
                loss        = loss_fn(target_pred, target)
              
    
                test_loss += loss.item()
                test_acc  += (target_pred.argmax(1) == target).type(torch.float).sum().item()
    
        test_acc  /= size
        test_loss /= num_batches
    
        return test_acc, test_loss

    3. 正式训练

    import copy
    
    optimizer  = torch.optim.Adam(model.parameters(), lr= 1e-4)
    loss_fn    = nn.CrossEntropyLoss() # 创建损失函数
    
    epochs     = 40
    
    train_loss = []
    train_acc  = []
    test_loss  = []
    test_acc   = []
    
    best_acc = 0    # 设置一个最佳准确率,作为最佳模型的判别指标
    
    for epoch in range(epochs):
      
    
        model.train()
        epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, optimizer)
      
    
        model.eval()
        epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)
      
    
        # 保存最佳模型到 best_model
        if epoch_test_acc > best_acc:
            best_acc   = epoch_test_acc
            best_model = copy.deepcopy(model)
      
    
        train_acc.append(epoch_train_acc)
        train_loss.append(epoch_train_loss)
        test_acc.append(epoch_test_acc)
        test_loss.append(epoch_test_loss)
      
    
        # 获取当前的学习率
        lr = optimizer.state_dict()['param_groups'][0]['lr']
      
    
        template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%, Test_loss:{:.3f}, Lr:{:.2E}')
        print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss, 
                              epoch_test_acc*100, epoch_test_loss, lr))
      
    
    # 保存最佳模型到文件中
    PATH = './best_model.pth'  # 保存的参数文件名
    torch.save(model.state_dict(), PATH)
    
    print('Done')

    四、 结果可视化

    1. Loss与Accuracy图

    import matplotlib.pyplot as plt
    #隐藏警告
    import warnings
    warnings.filterwarnings("ignore")               #忽略警告信息
    plt.rcParams['font.sans-serif']    = ['SimHei'] # 用来正常显示中文标签
    plt.rcParams['axes.unicode_minus'] = False      # 用来正常显示负号
    plt.rcParams['figure.dpi']         = 100        #分辨率
    
    epochs_range = range(epochs)
    
    plt.figure(figsize=(12, 3))
    plt.subplot(1, 2, 1)
    
    plt.plot(epochs_range, train_acc, label='Training Accuracy')
    plt.plot(epochs_range, test_acc, label='Test Accuracy')
    plt.legend(loc='lower right')
    plt.title('Training and Validation Accuracy')
    
    plt.subplot(1, 2, 2)
    plt.plot(epochs_range, train_loss, label='Training Loss')
    plt.plot(epochs_range, test_loss, label='Test Loss')
    plt.legend(loc='upper right')
    plt.title('Training and Validation Loss')
    plt.show()

    可视化展示:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值