【量化交易数据篇】01如何通过wind获取股票数据

        量化数据的获取对于量化交易至关重要,但公开平台很多数据的获取和处理不够严谨。本文通过专业数据库的使用,给大家提供获取的方法。WIND是不错的数据,但其内部WINDATA格式不是传统的 DATAFRAME,所以有一些朋友用起来不方便。作为入门量化数据系列之一,我们就首先介绍一下,省去大家看文档的时间。

(特此声明:本案例中的所有股票代码均随机抽选,不具有任何投资建议和价值!)

示例1 通过WIND获取某只股票从2020年 1月1日-2024年1月1日的数据,整理为DataFrame格式。

代码为:

    第一步引入相关库。

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import warnings; warnings.simplefilter('ignore')
from WindPy import w
w.start() # 默认命令超时时间为120秒,可加入waitTime参数,如waitTime=30,即设置命令超时时间为60秒  
w.isconnected() # 判断WindPy是否已经登录成功


#1.获取特斯拉过去四年的量价数据
data_tela = w.wsd("TSLA.O", "open,high,low,close,volume", "2020-01-01", "2024-02-18", "TradingCalendar=AMEX;Currency=USD;PriceAdj=F")
data_tela
.ErrorCode=0
.Codes=[TSLA.O]
.Fields=[OPEN,HIGH,LOW,CLOSE,VOLUME]
.Times=[20200102,20200103,20200106,20200107,20200108,20200109,20200110,20200113,20200114,20200115,...]
.Data=[[28.300003598531546,29.36667040083191,29.364670400577598,30.76000391133676,31.580004015605166,33.14000421396945,32.11933741751829,32.90000418345187,36.28367128037405,35.317337824165065,...],[28.713050317719816,30.266670515272843,30.104003827922035,31.442003998057555,33.23267089241929,33.25333756171386,32.329337444221174,35.042004455821285,36.49400464045266,35.856004559326756,...],[28.114003574880417,29.128003703817203,29.333337063260025,30.22367050980511,31.21533730256873,31.524670675235836,31.580004015605166,32.80000417073621,34.99333778296633,34.45235771417716,...],[28.684003647359674,29.53400375544278,30.10267049441916,31.27067064293806,32.80933750525634,32.08933741370359,31.87667071999495,34.99067111596058,35.86133789333825,34.56667106204619,...],[9558386.0,17774420.0,10157500.0,18209140.0,31199390.0,28463190.0,12976830.0,26634550.0,29061380.0,17368830.0,...]]等

        请注意:这是WindPy.w.WindData格式的数据,很多人不熟悉。如果要获得DataFrame格式的数据,则需要指定usedf=True。如果要获得分项数据,则需要df.items()。

        第二步:将WindData对象转换为DataFrame格式。

代码:

data1 = w.wsd("TSLA.O", "open,high,low,close,volume", "2020-01-01", "2024-01-01", "TradingCalendar=AMEX;Currency=USD;PriceAdj=F",usedf=True)
data1
(0,
                   OPEN        HIGH         LOW       CLOSE       VOLUME
 2020-01-02   28.300004   28.713050   28.114004   28.684004    9558386.0
 2020-01-03   29.366670   30.266671   29.128004   29.534004   17774420.0
 2020-01-06   29.364670   30.104004   29.333337   30.102670   10157500.0
 2020-01-07   30.760004   31.442004   30.223671   31.270671   18209140.0
 2020-01-08   31.580004   33.232671   31.215337   32.809338   31199390.0
 ...                ...         ...         ...         ...          ...
 2023-12-22  256.760000  258.220000  251.370000  252.540000   93370094.0
 2023-12-26  254.490000  257.970000  252.910000  256.610000   86892382.0
 2023-12-27  258.350000  263.340000  257.520000  261.440000  106494359.0
 2023-12-28  263.660000  265.130000  252.710000  253.180000  113619943.0
 2023-12-29  255.100000  255.190000  247.430000  248.480000  100891578.0
 
 [1006 rows x 5 columns])

 注意,该数据格式仍不是我们想要的格式,需要进一步修改。

其中,data1[0]  #ErrorCode =0表示代码运行正常,元组中的第二个数,为数据本身。

data1[1] # 取第二个数,为数据本身
	            OPEN	   HIGH	        LOW	      CLOSE	     VOLUME
2020-01-02	28.300004	28.713050	28.114004	28.684004	9558386.0
2020-01-03	29.366670	30.266671	29.128004	29.534004	17774420.0
2020-01-06	29.364670	30.104004	29.333337	30.102670	10157500.0
2020-01-07	30.760004	31.442004	30.223671	31.270671	18209140.0
2020-01-08	31.580004	33.232671	31.215337	32.809338	31199390.0
...	...	...	...	...	...
2023-12-22	256.760000	258.220000	251.370000	252.540000	93370094.0
2023-12-26	254.490000	257.970000	252.910000	256.610000	86892382.0
2023-12-27	258.350000	263.340000	257.520000	261.440000	106494359.0
2023-12-28	263.660000	265.130000	252.710000	253.180000	113619943.0
2023-12-29	255.100000	255.190000	247.430000	248.480000	100891578.0
1006 rows × 5 columns

<think>好的,我现在需要帮助用户解决如何导出股票tick数据以进行复盘的问题。首先,用户的需求是从交易平台或数据源导出这些数据,用于交易后的分析。我应该先考虑用户可能接触到的常见数据来源,比如交易平台提供的导出功能,第三方数据服务商,或者API接口。 根据引用[2],提到jsQR导出一个方法需要图像数据、宽、高和可选配置对象。这可能和API的使用有关,所以可以联想到通过交易平台的API获取数据。比如,很多交易平台如TradingView、Alpaca或者国内的券商可能提供API来获取实时或历史数据,包括tick级别的。 接下来,引用[1]中提到了使用Excel的数据透视表来分析定类数据,比如卡方检验等方法。这可能意味着用户对数据处理有一定的基础,可能需要指导如何将导出的数据整理成适合分析的格式,比如CSV或Excel文件。因此,在回答中应该提到数据导出的格式和处理步骤。 引用[3]中的ANR-WatchDog原理涉及到线程和消息处理,这可能与实时数据抓取有关,比如通过编写脚本或程序定时从API获取数据,避免主线程阻塞。不过这可能更偏向于技术实现,用户可能需要了解如何自动化导出数据的过程。 用户可能没有提到的点包括数据清洗和合规性问题。比如,导出数据时需要注意平台的权限和合规性要求,确保不违反用户协议。此外,tick数据量通常很大,存储和管理也是一个需要考虑的问题,可能需要使用数据库或者专门的数据分析工具。 然后,我需要整理步骤:首先确定数据源,比如交易平台、第三方数据提供商或开源数据集;然后使用平台提供的导出功能或API获取数据;接着处理数据格式,保存为CSV等;最后进行复盘分析,可能结合引用[1]中的统计方法或机器学习模型。 还要考虑用户可能遇到的问题,比如免费数据源的局限性,付费数据的成本,或者API调用的技术门槛。因此,在回答中需要提到这些注意事项,并建议合适的工具或库,比如Pythonpandas处理数据,requests调用API等。 最后,生成相关问题,比如如何清洗tick数据,或实时获取数据的方法,引导用户进一步学习。</think>### 如何导出股票Tick数据用于复盘分析 #### 1. **选择数据来源** - **交易平台内置导出功能** 部分券商或交易软件(如TradingView、Wind、同花顺)支持直接导出历史Tick数据。操作步骤通常为:登录平台 → 进入历史数据模块 → 选择股票代码和时间范围 → 导出为CSV/Excel文件[^2]。 - **第三方数据服务商** 如聚宽、万得(Wind)、天勤量化等提供付费Tick数据接口,支持按需导出。需注意数据格式(如时间戳、买卖盘口、成交量)的完整性[^1]。 - **API接口调用** 通过券商或金融数据API(如Alpaca、Tushare)编程获取数据。例如使用Python的`requests`库调用接口,返回JSON或CSV格式数据: ```python import requests response = requests.get("https://api.example.com/tick_data?symbol=000001.SZ&start=20230101") data = response.json() ``` #### 2. **数据导出与清洗** - **格式标准化** Tick数据通常包含时间戳(精确到毫秒)、最新价、成交量、买卖盘口等字段。需统一时间格式(如UTC+8)并去除异常值(如负价格)[^1]。 - **存储优化** 高频Tick数据量庞大,建议使用数据库(如MySQL、InfluxDB)或压缩文件(如Parquet)存储。例如用Python的`pandas`处理: ```python import pandas as pd df = pd.read_csv("tick_data.csv") df.to_parquet("tick_data.parquet", compression="snappy") ``` #### 3. **复盘分析工具** - **可视化工具** 使用Matplotlib或Plotly绘制分时图、盘口深度图,例如: ```python import plotly.express as px fig = px.line(df, x="timestamp", y="price", title="Tick Price Trend") fig.show() ``` - **统计与回测** 结合引用[1]中的卡方检验、相关系数方法,分析量价关系。可通过回测框架(如Backtrader)验证策略。 #### 注意事项 - **合规性**:确保数据获取符合平台协议,避免侵犯版权。 - **数据质量**:检查是否存在断点或滑点,可通过插值法修补缺失值。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值