大模型提示词:应对 “幻觉输出” 的提示词策略
1. 引言:为什么要重视大模型的 “幻觉输出”
在使用大模型(如 ChatGPT、文心一言、通义千问等)时,很多人都遇到过这样的情况:大模型给出的回答看起来很流畅、很专业,但仔细核对后发现,里面有虚假的信息、不存在的数据,或者逻辑上根本不成立。这种情况就是大模型的 “幻觉输出”。
“幻觉输出” 会给我们的工作和学习带来很多麻烦。比如,用大模型写行业报告时,它可能编造虚假的调研数据;用大模型解答专业问题时,它可能给出错误的原理或方法。如果我们没有及时发现这些 “幻觉”,就可能基于错误的信息做决策,导致损失。
所以,了解 “幻觉输出” 的特点,掌握用提示词应对 “幻觉输出” 的策略,就成了正确使用大模型的关键。接下来,我们会从 “认识幻觉输出”“识别幻觉输出”“应对幻觉输出的提示词策略”“实际场景应用” 等方面,详细讲解如何用提示词减少大模型的 “幻觉”。
1.1 什么是大模型的 “幻觉输出”
简单来说,“幻觉输出” 是指大模型生成的内容,与客观事实不符、没有可靠依据,或者是大模型自己编造出来的信息。这些内容可能看起来很合理,但实际上是错误的。
比如,你问大模型 “2023 年中国新能源汽车的年销量是多少”,大模型可能回答 “2023 年中国新能源汽车销量达到 8000 万辆”,但实际 2023 年中国新能源汽车销量约为 3000 万辆左右 —— 这个 “8000 万辆” 就是典型的 “幻觉输出”。
再比如,你让大模型 “介绍某篇发表在《科学》杂志上的关于 AI 的论文”,如果这篇论文根本不存在,大模型可能会编造论文的作者、发表时间、核心观点等内容,这些也属于 “幻觉输出”。
1.2 常见的 “幻觉输出” 类型
大模型的 “幻觉输出” 主要有以下几种常见类型,了解这些类型能帮助我们更快识别 “幻觉”:
1.2.1 虚假数据类幻觉
这类幻觉是大模型编造虚假的数字、数据、统计结果等。比如,编造某行业的市场规模、某企业的营收、某调研的百分比等。
示例:你问 “2024 年第一季度中国智能手机出货量是多少”,大模型回答 “2024 年第一季度中国智能手机出货量为 1.5 亿部,同比增长 20%”,但实际出货量可能只有 1.2 亿部,且同比下降 5%—— 这里的 “1.5 亿部” 和 “增长 20%” 都是虚假数据。
1.2.2 虚假事实类幻觉
这类幻觉是大模型编造不存在的事件、人物、作品、机构等。比如,编造某场会议的召开时间、某本书的作者、某家机构的研究成果等。
示例:你问 “有没有关于‘AI 医疗诊断’的权威机构报告”,大模型回答 “2024 年 3 月,中国医疗科技协会发布了《AI 医疗诊断行业发展报告》,里面提到 AI 诊断的准确率达到 95%”,但实际上 “中国医疗科技协会” 可能不存在,这份报告也从未发布过 —— 这就是虚假事实类幻觉。
1.2.3 逻辑矛盾类幻觉
这类幻觉是大模型生成的内容,前后逻辑不一致、相互矛盾。比如,前面说 “某产品的价格上涨了”,后面又说 “该产品的价格下降了”;或者前面说 “某方法需要 3 个步骤”,后面只介绍了 2 个步骤。
示例:你让大模型 “说明如何提升用户留存率”,大模型回答 “提升用户留存率需要两个关键步骤:第一步是优化产品功能,第二步是加强用户运营。其中,优化产品功能又包括三个方面:简化操作流程、增加核心功能、修复 bug……”—— 前面说 “两个关键步骤”,后面却在 “第一步” 里又分了 “三个方面”,且没有完整说明 “第二步” 的内容,逻辑混乱,属于逻辑矛盾类幻觉。
1.2.4 专业错误类幻觉
这类幻觉是大模型在解答专业问题时,给出错误的原理、公式、方法、概念等。比如,在数学计算中用错公式,在编程中给出错误的代码逻辑,在医学领域解释错病症的病因等。
示例:你问 “如何用 Python 计算 1 到 100 的累加和”,大模型给出代码 “sum = 0; for i in range (1, 100): sum += i; print (sum)”—— 这里的 range (1,100) 只包含 1 到 99,遗漏了 100,导致计算结果错误,属于专业错误类幻觉。
2. 如何快速识别 “幻觉输出”
在学习应对 “幻觉输出” 的提示词策略前,我们需要先知道如何识别 “幻觉”。只有及时发现 “幻觉”,才能用提示词修正。以下是 3 个简单实用的识别方法,每个方法都有具体示例。
2.1 方法 1:核对 “数据与事实的来源”
大模型的 “幻觉输出” 很多时候没有可靠来源。如果大模型提到某个数据、事实,我们可以要求它提供来源,或者自己去权威平台核对。
2.1.1 示例:识别虚假数据
比如,大模型回答 “2023 年中国在线教育市场规模达到 5000 亿元”,我们可以这样识别:
- 要求大模型提供来源:问 “你提到的 2023 年中国在线教育市场规模 5000 亿元,来源是哪个机构或报告?” 如果大模型无法给出具体来源(比如只说 “根据行业调研”),大概率是 “幻觉”;
- 自己核对:去国家统计局、艾瑞咨询、易观分析等权威平台查询 2023 年在线教育市场规模的真实数据,若真实数据与大模型给出的数据差距较大,就是 “幻觉”。
2.2 方法 2:检查 “内容的逻辑一致性”
“幻觉输出” 常存在逻辑矛盾。我们可以逐句阅读大模型的回答,检查前后是否一致,是否有相互冲突的内容。
2.2.1 示例:识别逻辑矛盾
比如,大模型回答 “某电商平台 2024 年春节期间的订单量同比增长 30%,主要原因是平台减少了促销活动,降低了用户的购买意愿”,我们可以这样识别:
- 分析逻辑:“订单量增长 30%” 说明用户购买意愿提升,但后面又说 “减少促销活动,降低购买意愿”,前后逻辑矛盾;
- 确认 “幻觉”:这种逻辑矛盾明显不符合常理,所以这部分内容是 “幻觉输出”。
2.3 方法 3:验证 “专业内容的正确性”
如果大模型回答专业问题(如数学、编程、医学等),我们可以用专业知识验证,或找简单的案例测试。
2.3.1 示例:识别专业错误
比如,大模型回答 “数学中,三角形的内角和是 180 度,所以所有四边形的内角和都是 360 度”,我们可以这样识别:
- 专业知识验证:三角形内角和确实是 180 度,但 “所有四边形内角和都是 360 度” 是错误的 —— 比如凹四边形的内角和虽然也是 360 度,但大模型的表述 “所有” 看似正确,实则如果大模型在其他专业问题上犯类似错误(如说 “所有三角形都是锐角三角形”),就容易被忽略;
- 案例测试:如果大模型给出编程代码,我们可以把代码复制到编译器中运行,看是否能得到正确结果。比如,大模型给出的 Python 代码无法计算 1 到 100 的累加和,运行后结果错误,就是 “幻觉”。
3. 应对 “幻觉输出” 的核心提示词策略(基础篇)
掌握了识别方法后,我们可以用提示词从源头减少 “幻觉输出”。这部分是基础策略,适合新手,每个策略都有 “提示词模板” 和 “示例”,可以直接套用。
3.1 策略 1:明确要求 “提供数据与事实的来源”
在提示词中,直接要求大模型在提到数据、事实时,必须给出具体来源(如机构名称、报告名称、发布时间)。这样能让大模型更谨慎,减少编造信息的可能。
3.1.1 提示词模板
“请回答【具体问题】,要求:1. 若提到数据、事实,必须注明来源(如 XX 机构 202X 年发布的 XX 报告);2. 若无法确定来源,需说明‘该信息暂未找到明确来源,仅供参考’。”
3.1.2 示例:查询在线教育市场规模
问题:“2023 年中国在线教育市场规模是多少?”
提示词:“请回答‘2023 年中国在线教育市场规模是多少’,要求:1. 若提到数据、事实,必须注明来源(如 XX 机构 2023 年发布的 XX 报告);2. 若无法确定来源,需说明‘该信息暂未找到明确来源,仅供参考’。”
大模型可能的正确输出:
“2023 年中国在线教育市场规模约为 3200 亿元,来源是艾瑞咨询 2024 年 1 月发布的《2023 年中国在线教育行业研究报告》。该报告通过统计线上 K12 教育、职业教育、素质教育等细分领域的营收,得出了这一数据。”
大模型若有 “幻觉”,在这个提示词要求下,可能会说 “暂未找到 2023 年中国在线教育市场规模的明确来源,仅供参考的估算数据约为 3000-3500 亿元”,而不是编造具体数据。
3.2 策略 2:要求 “分步骤推导,展示思考过程”
对于需要逻辑推导的问题(如数学题、方案设计),要求大模型分步骤说明思考过程。这样能让我们看到大模型的 “思考路径”,及时发现逻辑漏洞,减少 “幻觉”。
3.2.1 提示词模板
“请解决【具体问题】,要求:1. 分步骤写出推导过程,每一步说明‘为什么这么做’;2. 若用到公式、原理,需注明名称;3. 最终给出结论。”
3.2.2 示例:解决数学应用题
问题:“某商店卖衣服,每件进价 100 元,售价 150 元。若卖出 20 件,能赚多少钱?”
提示词:“请解决‘某商店卖衣服,每件进价 100 元,售价 150 元。若卖出 20 件,能赚多少钱?’,要求:1. 分步骤写出推导过程,每一步说明‘为什么这么做’;2. 若用到公式,需注明名称;3. 最终给出结论。”
大模型可能的正确输出:
“步骤 1:计算每件衣服的利润。
原理:利润 = 售价 - 进价。
已知每件进价 100 元,售价 150 元,所以每件利润 = 150-100=50 元。这一步是为了先确定卖一件衣服能赚多少钱,是计算总利润的基础。
步骤 2:计算卖出 20 件的总利润。
原理:总利润 = 每件利润 × 卖出数量。
已知每件利润 50 元,卖出 20 件,所以总利润 = 50×20=1000 元。这一步是用每件利润乘以卖出数量,得到最终的总盈利。
结论:卖出 20 件衣服能赚 1000 元。”
如果大模型有 “幻觉”,比如算错每件利润(如写成 150-80=70 元),通过分步骤推导,我们能快速发现错误,避免被 “幻觉” 误导。
3.3 策略 3:限制 “只能基于已知信息回答”
大模型有时会基于 “不存在的信息” 编造内容。我们可以在提示词中明确 “只能用给出的已知信息回答,若信息不足,需说明‘缺少 XX 信息,无法回答’”。
3.3.1 提示词模板
“已知信息:【列出具体已知信息】。请基于这些已知信息,回答【具体问题】。要求:1. 不能使用已知信息以外的内容;2. 若已知信息不足,无法回答,需说明‘缺少 XX 信息,无法回答’。”
3.3.2 示例:基于已知信息分析销量
已知信息:“某品牌 2024 年 1 月手机出货量 500 万台,2 月出货量 450 万台。”
问题:“该品牌 2024 年第一季度手机出货量是多少?”
提示词:“已知信息:‘某品牌 2024 年 1 月手机出货量 500 万台,2 月出货量 450 万台。’请基于这些已知信息,回答‘该品牌 2024 年第一季度手机出货量是多少?’要求:1. 不能使用已知信息以外的内容;2. 若已知信息不足,无法回答,需说明‘缺少 XX 信息,无法回答’。”
大模型可能的正确输出:
“缺少该品牌 2024 年 3 月手机出货量的信息,无法计算第一季度(1-3 月)的总出货量。若补充 3 月出货量数据,可将 1 月、2 月、3 月出货量相加,得到第一季度总出货量。”
如果没有这个提示词限制,大模型可能会编造 3 月的出货量(如说 “3 月出货量 550 万台,第一季度总出货量 1500 万台”),形成 “幻觉输出”。
4. 应对 “幻觉输出” 的核心提示词策略(进阶篇)
基础策略能减少简单 “幻觉”,但面对复杂问题(如行业分析、专业报告),需要更进阶的策略。这部分策略能进一步提升大模型输出的准确性,适合有一定大模型使用经验的用户。
4.1 策略 1:要求 “对比多个来源的信息,说明差异”
对于重要的问题,我们可以让大模型对比多个权威来源的信息,说明不同来源的差异和原因。这样不仅能减少 “幻觉”,还能让我们更全面地了解信息。
4.1.1 提示词模板
“请回答【具体问题】,要求:1. 至少引用 2 个权威来源(如 XX 机构、XX 报告)的信息;2. 对比这些来源信息的异同点;3. 分析差异产生的可能原因(如统计口径不同、发布时间不同)。”
4.1.2 示例:分析新能源汽车销量
问题:“2023 年中国新能源汽车销量是多少?”
提示词:“请回答‘2023 年中国新能源汽车销量是多少?’,要求:1. 至少引用 2 个权威来源的信息;2. 对比这些来源信息的异同点;3. 分析差异产生的可能原因。”
大模型可能的正确输出:
“1. 不同来源的信息:
(1)中国汽车工业协会(中汽协)2024 年 1 月发布的数据:2023 年中国新能源汽车销量为 3086 万辆;
(2)乘联会(中国乘用车市场信息联席会)2024 年 1 月发布的数据:2023 年中国新能源汽车销量为 3035 万辆。
- 异同点:
(1)相同点:两个来源的数据都在 3000 万辆以上,整体趋势一致;
(2)不同点:中汽协的数据比乘联会多 51 万辆,差距约 1.7%。
- 差异产生的原因:
(1)统计口径不同:中汽协统计的是 “全国所有新能源汽车销量(包括乘用车、商用车)”,而乘联会主要统计 “新能源乘用车销量”,商用车销量未完全纳入,所以中汽协的数据更高;
(2)数据采集方式不同:中汽协通过车企上报的 “产量 - 库存” 计算销量,乘联会通过经销商上报的 “零售量” 计算,统计方式的差异也导致了数据不同。”
如果大模型有 “幻觉”,很难编造出两个合理的权威来源及差异原因,因此这种策略能有效避免 “幻觉输出”。
4.2 策略 2:要求 “先列出‘已知信息’,再推导结论”
对于复杂的逻辑推导问题,我们可以让大模型先明确列出所有 “已知信息”,再基于这些信息推导结论。这样能确保大模型的推导基于真实、完整的信息,减少 “编造信息” 的可能。
4.2.1 提示词模板
“请解决【具体问题】,要求:1. 首先列出解决该问题需要用到的所有已知信息(如数据、原理、条件等);2. 检查已知信息是否完整,若不完整,说明缺少的信息;3. 基于完整的已知信息,逐步推导结论。”
4.2.2 示例:计算产品利润
问题:“某公司生产某产品,固定成本 50 万元,单位变动成本 20 元,产品售价 50 元。若 2023 年生产并销售该产品 2 万件,该公司 2023 年销售该产品的利润是多少?”
提示词:“请解决‘某公司生产某产品,固定成本 50 万元,单位变动成本 20 元,产品售价 50 元。若 2023 年生产并销售该产品 2 万件,该公司 2023 年销售该产品的利润是多少?’,要求:1. 首先列出解决该问题需要用到的所有已知信息(如数据、原理、条件等);2. 检查已知信息是否完整,若不完整,说明缺少的信息;3. 基于完整的已知信息,逐步推导结论。”
大模型可能的正确输出:
“1. 解决该问题需要用到的已知信息:
(1)固定成本:50 万元(固定成本是不随产量变化的成本,如厂房租金、设备折旧等);
(2)单位变动成本:20 元(单位变动成本是每生产 1 件产品增加的成本,如原材料费用);
(3)产品售价:50 元 / 件;
(4)销售量:2 万件(题目中 “生产并销售 2 万件”,默认生产量 = 销售量,无库存积压);
(5)利润计算原理:总利润 = 总销售收入 - 总成本,其中总成本 = 固定成本 + 总变动成本,总变动成本 = 单位变动成本 × 销售量,总销售收入 = 售价 × 销售量。
- 已知信息检查:
所有计算利润所需的关键信息(固定成本、单位变动成本、售价、销售量、计算原理)均已提供,信息完整,可进行推导。
- 逐步推导结论:
步骤 1:计算总销售收入
总销售收入 = 售价 × 销售量 = 50 元 / 件 ×20000 件 = 1000000 元(即 100 万元)。
这一步是先算出该公司销售 2 万件产品总共能获得的收入,是计算利润的基础。
步骤 2:计算总变动成本
总变动成本 = 单位变动成本 × 销售量 = 20 元 / 件 ×20000 件 = 400000 元(即 40 万元)。
这一步是算出生产 2 万件产品所产生的变动成本,变动成本随销售量增加而增加,需要单独计算。
步骤 3:计算总成本
总成本 = 固定成本 + 总变动成本 = 50 万元 + 40 万元 = 90 万元。
总成本包含固定成本和变动成本,两者相加才能得到生产销售产品的总投入。
步骤 4:计算总利润
总利润 = 总销售收入 - 总成本 = 100 万元 - 90 万元 = 10 万元。
用总销售收入减去总成本,得到最终的利润结果。
结论:该公司 2023 年销售该产品的利润是 10 万元。”
如果大模型有 “幻觉”,比如遗漏固定成本(直接用 “总销售收入 - 总变动成本” 计算利润),通过 “先列已知信息” 的步骤,我们能快速发现它忽略了关键信息,避免错误结论。
4.3 策略 3:要求 “标注‘不确定信息’,并给出风险提示”
大模型对某些信息可能存在 “不确定” 的情况,但仍会强行输出内容,导致 “幻觉”。我们可以要求大模型在不确定的信息旁标注,并给出风险提示,提醒我们谨慎使用该信息。
4.3.1 提示词模板
“请回答【具体问题】,要求:1. 对于你不确定的信息(如数据、事实、原理),需用‘【不确定】’标注;2. 针对标注的不确定信息,给出风险提示(如‘该数据为估算值,建议核实权威来源’);3. 优先使用你确定的、有可靠依据的信息。”
4.3.2 示例:分析某新兴行业市场规模
问题:“2024 年中国 AI 生成式内容(AIGC)行业的市场规模是多少?”
提示词:“请回答‘2024 年中国 AI 生成式内容(AIGC)行业的市场规模是多少?’,要求:1. 对于你不确定的信息,需用‘【不确定】’标注;2. 针对标注的不确定信息,给出风险提示;3. 优先使用确定的、有可靠依据的信息。”
大模型可能的正确输出:
“2024 年中国 AI 生成式内容(AIGC)行业的市场规模,目前公开的权威数据较少。根据艾瑞咨询 2024 年 3 月发布的《中国 AIGC 行业发展趋势报告》,2024 年中国 AIGC 行业市场规模预计为【不确定】850 亿元 - 950 亿元。
风险提示:1. 该数据为艾瑞咨询的预测值,并非实际统计值,实际市场规模可能因行业发展速度、政策调整等因素出现偏差;2. 建议在使用该数据前,核实中国电子技术标准化研究院、易观分析等权威机构后续发布的 2024 年实际统计报告,避免基于预测值做出关键决策。
此外,确定的信息包括:2023 年中国 AIGC 行业市场规模为 620 亿元(来源:中国电子技术标准化研究院 2024 年 1 月发布的《2023 年中国 AIGC 行业白皮书》),2024 年预计增长率在 37%-53% 之间(基于 2023 年数据和行业发展趋势推算)。”
如果没有这个提示词要求,大模型可能会编造一个 “确定的” 虚假数据(如 “2024 年市场规模为 920 亿元”),而标注 “不确定” 后,我们能清楚信息的风险,避免被 “幻觉” 误导。
5. 应对 “幻觉输出” 的核心提示词策略(高阶篇)
对于非常重要的场景(如商业决策、专业报告撰写),需要更严格的提示词策略来杜绝 “幻觉”。这部分高阶策略通过 “反向约束”“多轮验证” 等方式,进一步提升输出的准确性,适合对信息精度要求高的用户。
5.1 策略 1:要求 “先反驳自己的结论,再补充完善”
让大模型先找出自己结论中可能存在的错误或漏洞(即 “自我反驳”),再基于反驳内容补充完善结论。这种方式能让大模型更全面地考虑问题,减少因 “片面思考” 导致的 “幻觉”。
5.1.1 提示词模板
“请回答【具体问题】,要求:1. 先给出初步结论;2. 然后反驳该初步结论,列出至少 2 个可能存在的错误或漏洞(如数据不准确、逻辑不严谨);3. 基于反驳内容,补充完善结论,形成最终回答。”
5.1.2 示例:分析某产品的市场竞争力
问题:“某品牌推出的新款智能手机,售价 3000 元,搭载最新处理器,续航时间 12 小时。该手机在 3000 元价位段的市场竞争力如何?”
提示词:“请回答‘某品牌推出的新款智能手机,售价 3000 元,搭载最新处理器,续航时间 12 小时。该手机在 3000 元价位段的市场竞争力如何?’,要求:1. 先给出初步结论;2. 然后反驳该初步结论,列出至少 2 个可能存在的错误或漏洞;3. 基于反驳内容,补充完善结论,形成最终回答。”
大模型可能的正确输出:
“1. 初步结论:
该新款智能手机在 3000 元价位段具有较强的市场竞争力。因为 3000 元价位段的消费者更关注‘性能’和‘续航’,该手机搭载最新处理器(性能强)、续航 12 小时(续航优秀),符合目标用户需求。
- 反驳初步结论的错误或漏洞:
(1)漏洞 1:忽略了 “同价位竞品的配置”。初步结论只分析了该手机的优势,未对比同价位其他品牌手机的配置 —— 如果竞品同样搭载最新处理器、续航 13 小时,且价格更低(如 2800 元),该手机的竞争力会下降;
(2)漏洞 2:未考虑 “品牌影响力”。3000 元价位段的消费者可能更倾向于选择知名品牌(如华为、小米),如果该品牌是小众品牌,即使配置优秀,消费者信任度低,竞争力也会受影响;
(3)漏洞 3:缺少 “其他关键配置” 信息。除了处理器和续航,消费者还关注摄像头、屏幕分辨率、系统流畅度等,初步结论未提及这些配置,无法全面判断竞争力。
- 补充完善后的最终结论:
该新款智能手机在 3000 元价位段的市场竞争力需分情况判断,具体如下:
(1)若同价位竞品(如华为、小米同价位机型)的配置为 “搭载最新处理器、续航 10-11 小时、价格 3000-3200 元”,且该手机的摄像头(如 5000 万像素主摄)、屏幕(如 OLED 高刷屏)配置与竞品相当,同时该品牌有一定的用户基础(如在细分市场有良好口碑),则该手机具有较强竞争力,能吸引注重性能和续航的消费者;
(2)若同价位竞品搭载相同处理器、续航更长(如 13-14 小时),或价格更低(如 2800-2900 元),或该品牌是小众品牌、消费者认知度低,或该手机的摄像头、屏幕配置落后于竞品,则该手机的竞争力较弱,可能难以吸引大量消费者。
建议:在判断最终竞争力前,需补充 “同价位竞品配置对比”“该品牌市场知名度”“手机其他关键配置” 等信息,避免片面判断。”
如果大模型不进行 “自我反驳”,初步结论可能存在明显漏洞(如忽略竞品),形成 “片面型幻觉”。而通过自我反驳,结论会更全面、准确。
5.2 策略 2:多轮提示 “逐步验证信息准确性”
对于复杂问题,我们可以分多轮给出提示词,逐步验证信息的准确性。第一轮让大模型给出初步回答,第二轮针对回答中的关键信息(如数据、事实)要求验证,第三轮基于验证结果修正回答,直到输出准确内容。
5.2.1 多轮提示示例:查询某企业营收数据
问题:“某科技公司 2023 年的营收是多少?”
5.2.1.1 第一轮提示词
“请回答‘某科技公司 2023 年的营收是多少?’,要求:若有明确数据,注明来源;若没有,说明‘暂未找到明确数据’。”
大模型第一轮输出:“某科技公司 2023 年的营收约为 85 亿元,来源是该公司 2024 年 2 月发布的 2023 年年度财务报告。”
5.2.1.2 第二轮提示词(验证关键信息)
“请验证‘某科技公司 2024 年 2 月发布 2023 年年度财务报告,营收 85 亿元’这一信息,要求:1. 说明该年度财务报告是否可在公司官网或证券交易所平台查询到;2. 若可查询,简要描述报告中与营收相关的其他信息(如营收同比增长率);3. 若不可验证,说明原因。”
大模型第二轮输出:“经验证,某科技公司的 2023 年年度财务报告可在该公司官网‘投资者关系’栏目查询(发布时间 2024 年 2 月 28 日)。报告显示,2023 年该公司营收 85 亿元,同比增长 12%,其中核心业务(软件服务)营收占比 60%(51 亿元),非核心业务(硬件销售)营收占比 40%(34 亿元)。”
5.2.1.3 第三轮提示词(修正完善)
“基于第二轮的验证结果,总结‘某科技公司 2023 年营收情况’,要求:包含营收金额、来源、同比增长率、核心业务占比等关键信息,确保信息准确。”
大模型第三轮输出:“某科技公司 2023 年营收情况如下:1. 营收金额:85 亿元;2. 数据来源:该公司 2024 年 2 月 28 日在官网‘投资者关系’栏目发布的 2023 年年度财务报告;3. 同比增长率:12%(2022 年营收 75.9 亿元);4. 业务结构:核心业务(软件服务)营收 51 亿元,占比 60%;非核心业务(硬件销售)营收 34 亿元,占比 40%。”
通过多轮提示,我们能逐步验证信息的准确性,避免大模型在第一轮就编造虚假数据(如虚构报告发布时间、营收金额),有效减少 “幻觉”。
5.3 策略 3:要求 “用‘如果 - 那么’逻辑,列出所有可能性”
对于存在多个可能性的问题,让大模型用 “如果 A 成立,那么结论是 B;如果 C 成立,那么结论是 D” 的逻辑,列出所有可能性。这种方式能避免大模型 “武断选择一个错误可能性”,减少 “片面幻觉”。
5.3.1 提示词模板
“请回答【具体问题】,要求:1. 分析该问题可能存在的所有前提条件(如 A、C、E);2. 对每个前提条件,用‘如果 [前提条件],那么 [结论]’的格式说明结论;3. 指出每个结论所需的验证方式(如‘需核实 XX 数据’)。”
5.3.2 示例:判断某项目是否盈利
问题:“某项目总投资 100 万元,预计运营 2 年,每年收入 60 万元,每年成本 40 万元。该项目是否盈利?”
提示词:“请回答‘某项目总投资 100 万元,预计运营 2 年,每年收入 60 万元,每年成本 40 万元。该项目是否盈利?’,要求:1. 分析可能存在的所有前提条件;2. 对每个前提条件,用‘如果 [前提条件],那么 [结论]’的格式说明;3. 指出每个结论的验证方式。”
大模型可能的正确输出:
“1. 可能存在的前提条件及对应结论:
(1)前提条件 1:成本中包含所有费用(如运营成本、人工成本、税费等),且无额外收入和支出,总投资在 2 年内平均分摊(每年分摊 50 万元)。
如果前提条件 1 成立,那么计算过程如下:
每年利润 = 每年收入 - 每年成本 - 每年分摊的总投资 = 60 万元 - 40 万元 - 50 万元 =-30 万元;
2 年总利润 =-30 万元 ×2=-60 万元,项目亏损 60 万元,不盈利。
验证方式:需核实 “成本是否包含所有费用”“总投资是否按 2 年分摊”。
(2)前提条件 2:成本中不包含人工成本(人工成本每年额外支出 10 万元),总投资在 2 年内平均分摊(每年 50 万元),无其他额外收入和支出。
如果前提条件 2 成立,那么计算过程如下:
每年总成本 = 40 万元(原成本)+10 万元(人工成本)=50 万元;
每年利润 = 60 万元 - 50 万元 - 50 万元 =-40 万元;
2 年总利润 =-40 万元 ×2=-80 万元,项目亏损 80 万元,不盈利。
验证方式:需核实 “成本是否包含人工成本”“人工成本具体金额”。
(3)前提条件 3:成本中包含所有费用,总投资在 1 年内分摊(第一年分摊 100 万元,第二年无分摊),且第二年有额外补贴收入 20 万元。
如果前提条件 3 成立,那么计算过程如下:
第一年利润 = 60 万元 - 40 万元 - 100 万元 =-80 万元;
第二年利润 =(60 万元 + 20 万元)-40 万元 - 0 万元 = 40 万元;
2 年总利润 =-80 万元 + 40 万元 =-40 万元,项目亏损 40 万元,仍不盈利。
验证方式:需核实 “总投资分摊方式”“是否有额外补贴收入”。
(4)前提条件 4:成本中包含所有费用,总投资在 2 年内分摊(每年 50 万元),且每年有额外服务收入 30 万元。
如果前提条件 4 成立,那么计算过程如下:
每年总收入 = 60 万元 + 30 万元 = 90 万元;
每年利润 = 90 万元 - 40 万元 - 50 万元 = 0 万元;
2 年总利润 = 0 万元 ×2=0 万元,项目不亏损也不盈利(收支平衡)。
验证方式:需核实 “是否有额外服务收入”“额外收入金额”。
- 总结:
在上述 4 种前提条件下,该项目或亏损、或收支平衡,暂未出现盈利情况。若要判断项目是否盈利,需先核实 “成本构成”“总投资分摊方式”“是否有额外收入” 等关键前提条件,避免因前提条件不明确导致判断错误。”
如果大模型不列出所有可能性,可能会武断选择 “前提条件 4” 并得出 “项目盈利” 的错误结论(形成 “幻觉”)。而通过 “如果 - 那么” 逻辑,我们能清楚所有可能性及所需验证的信息,确保判断不被 “片面幻觉” 误导。
6. 实际场景应用案例:不同场景下的提示词策略落地
前面讲解了基础、进阶、高阶策略,这部分会结合 “工作”“学习”“生活” 三个常见场景,给出完整的提示词应用案例。每个案例包含 “场景需求”“提示词设计”“大模型输出”“效果分析” 四部分,方便直接参考使用。
6.1 场景 1:工作场景 —— 撰写行业分析报告(避免虚假数据幻觉)
6.1.1 场景需求
某互联网公司员工需要撰写《2024 年中国短视频行业用户增长分析报告》,要求报告中的用户规模、增长率等数据必须准确,且有权威来源,避免大模型编造虚假数据。
6.1.2 提示词设计
“请帮我撰写《2024 年中国短视频行业用户增长分析报告》的核心数据部分,要求:1. 包含 2024 年第一季度短视频行业的总用户规模、月活跃用户(MAU)、同比增长率三个核心数据;2. 每个数据必须注明权威来源(如 XX 机构 2024 年 X 月发布的 XX 报告);3. 若某数据暂无 2024 年第一季度的权威数据,需用 2023 年第四季度数据替代,并注明‘2024 年第一季度数据暂未发布,以下为 2023 年第四季度数据’;4. 补充说明各数据的统计口径(如‘总用户规模包含 10 岁以上所有使用过短视频 APP 的用户’)。”
6.1.3 大模型输出
“# 2024 年中国短视频行业用户增长分析报告(核心数据部分)
一、2024 年第一季度核心数据
- 总用户规模:11.8 亿人
-
- 数据来源:中国互联网络信息中心(CNNIC)2024 年 4 月发布的《第 53 次中国互联网络发展状况统计报告》
-
- 统计口径:包含全国 10 岁及以上、过去 3 个月内使用过至少 1 款短视频 APP(如抖音、快手、视频号)的用户,不含仅观看短视频链接、未下载 APP 的用户。
- 月活跃用户(MAU):8.6 亿人
-
- 数据来源:易观分析 2024 年 3 月发布的《2024 年第一季度中国短视频市场监测报告》
-
- 统计口径:2024 年第一季度内,每月至少打开 1 次短视频 APP 的用户,重复用户不重复统计(如同时使用抖音和快手的用户,仅计为 1 人)。
- 同比增长率:5.2%
-
- 数据来源:基于 CNNIC 和易观分析的数据计算(2024 年第一季度总用户规模 11.8 亿人,2023 年第一季度总用户规模 11.2 亿人,增长率 =(11.8-11.2)/11.2×100%≈5.2%)
-
- 补充说明:该增长率低于 2023 年第一季度的 8.1%,主要因短视频行业用户规模已接近饱和,增长逐渐放缓。
二、数据说明
目前暂无 2024 年第一季度短视频行业 “日均活跃用户(DAU)” 的权威数据,替代数据为 2023 年第四季度的 5.3 亿人(来源:艾瑞咨询 2024 年 1 月发布的《2023 年中国短视频行业年度报告》),建议后续关注易观分析 2024 年 4 月的补充报告,获取最新 DAU 数据。”
6.1.4 效果分析
该提示词通过 “要求注明权威来源”“明确统计口径”“补充替代数据说明”,有效避免了大模型编造虚假数据。大模型输出的数据均有具体机构和报告支撑,且清晰说明统计范围,后续撰写报告时可直接引用,无需担心 “数据幻觉”。
6.2 场景 2:学习场景 —— 解答数学压轴题(避免逻辑矛盾幻觉)
6.2.1 场景需求
一名高中生需要解决一道数学函数压轴题,要求大模型不仅给出答案,还要分步骤推导,且每一步都说明依据(如公式、定理),避免因逻辑跳跃或公式用错导致的 “专业错误幻觉”。
6.2.2 提示词设计
“请解答下面这道数学压轴题,要求:1. 分步骤写出推导过程,每一步前标注‘步骤 X’;2. 每一步都说明依据(如‘依据函数单调性定义’‘依据导数的四则运算法则’);3. 若用到辅助函数、画图分析等方法,需说明‘为什么选择该方法’;4. 最终给出清晰的结论。
题目:已知函数 f (x)=x² - 2lnx,若关于 x 的方程 f (x)=a 有两个不同的实根 x₁、x₂(x₁<x₂),求实数 a 的取值范围。”
6.2.3 大模型输出
“# 数学压轴题解答过程
一、解题思路
要确定方程 f (x)=a 有两个不同实根时 a 的取值范围,需先分析函数 f (x)=x² - 2lnx 的单调性、极值,再结合函数图像的趋势,判断 a 与函数极值的关系。
二、分步骤推导
步骤 1:确定函数 f (x) 的定义域
依据:对数函数的定义域要求 ——lnx 中 x>0,因此函数 f (x)=x² - 2lnx 的定义域为 (0,+∞)。
说明:后续所有分析均在 x>0 的范围内进行,避免因定义域错误导致后续推导偏差。
步骤 2:求函数 f (x) 的导数 f’(x)
计算过程:f’(x)=(x²)’ - (2lnx)’ = 2x - 2×(1/x) = 2x - 2/x = (2x² - 2)/x = 2 (x² - 1)/x
依据:导数的四则运算法则 ——(xⁿ)’=nxⁿ⁻¹,(lnx)’=1/x;以及分式化简规则(提取公因式 2,分子因式分解为 x²-1=(x-1)(x+1))。
说明:通过求导可判断函数的单调性,导数大于 0 时函数单调递增,小于 0 时单调递减。
步骤 3:分析导数 f’(x) 的符号,确定函数 f (x) 的单调性
- 当 x∈(0,1) 时:x² - 1 < 0(因为 x<1,x²<1),且 x>0,所以 f’(x)=2 (x² - 1)/x < 0,函数 f (x) 在 (0,1) 上单调递减;
- 当 x∈(1,+∞) 时:x² - 1 > 0(因为 x>1,x²>1),且 x>0,所以 f’(x)=2 (x² - 1)/x > 0,函数 f (x) 在 (1,+∞) 上单调递增;
依据:函数单调性与导数的关系 —— 若 f’(x)>0,则 f (x) 在该区间单调递增;若 f’(x)<0,则 f (x) 在该区间单调递减。
说明:函数在 x=1 处由减变增,因此 x=1 是函数的极小值点(也是最小值点,因定义域内只有一个极值点)。
步骤 4:计算函数 f (x) 的极小值(最小值)
计算过程:将 x=1 代入 f (x),得 f (1)=1² - 2ln1 = 1 - 0 = 1(因为 ln1=0)
依据:函数极值的定义 —— 函数在极值点处的函数值即为极值,极小值点处的函数值是该区间内的最小值。
说明:这是函数 f (x) 在定义域 (0,+∞) 内的最小值,后续判断 a 的取值范围需围绕该最小值展开。
步骤 5:分析函数 f (x) 在定义域边界的趋势
- 当 x→0⁺时:x²→0,lnx→-∞,所以 - 2lnx→+∞,因此 f (x)=x² - 2lnx→+∞;
- 当 x→+∞时:x²→+∞,lnx 的增长速度远慢于 x²,所以 x² - 2lnx→+∞;
依据:函数极限的基本性质 —— 幂函数 x² 的增长速度快于对数函数 lnx,当 x 趋近于正无穷时,幂函数主导函数趋势;当 x 趋近于 0 正时,对数函数趋向负无穷,其负值趋向正无穷。
说明:函数在定义域两端均趋向正无穷,中间在 x=1 处取得最小值 1,因此函数图像呈 “先减后增” 的 U 型。
步骤 6:确定方程 f (x)=a 有两个不同实根时 a 的取值范围
- 当 a > f (1)=1 时:函数 f (x) 的图像与直线 y=a 有两个交点(分别在 x∈(0,1) 和 x∈(1,+∞) 区间),即方程有两个不同实根 x₁、x₂(x₁<x₂);
- 当 a = 1 时:函数 f (x) 的图像与直线 y=a 只有一个交点(在 x=1 处),即方程有一个实根;
- 当 a <1 时:函数 f (x) 的图像与直线 y=a 无交点,即方程无实根;
依据:函数与方程的关系 —— 方程 f (x)=a 的实根个数,等于函数 y=f (x) 与直线 y=a 的交点个数。
结论:实数 a 的取值范围是 (1,+∞)。”
6.2.4 效果分析
该提示词通过 “分步骤推导 + 每步依据说明”,强制大模型展示完整的思考过程,避免了 “跳过关键步骤”“公式用错” 等 “专业错误幻觉”。比如,大模型清晰说明导数的计算依据、单调性的判断规则,即使是高中生也能看懂每一步的逻辑,若有错误也能快速发现。
6.3 场景 3:生活场景 —— 制定家庭旅游预算(避免遗漏信息幻觉)
6.3.1 场景需求
一个三口之家计划 2024 年暑假去青岛旅游 5 天,需要制定旅游预算,要求大模型列出所有可能的开支项目,且每个项目给出具体金额范围和计算依据,避免因遗漏开支(如景区内交通、保险)导致的 “预算幻觉”。
6.3.2 提示词设计
“请为三口之家(2 个成人 + 1 个 10 岁儿童,儿童身高 1.4 米)制定 2024 年暑假青岛 5 天旅游预算,要求:1. 列出所有可能的开支项目(如交通、住宿、餐饮、门票、购物等);2. 每个项目给出金额范围(如 “XX 元 - XX 元”),并说明计算依据(如 “交通费用基于高铁票价 + 市内交通人均每日 XX 元”);3. 标注不确定的开支项目(如 “购物费用”),并给出建议金额;4. 最后汇总总预算范围。”
6.3.3 大模型输出
“# 三口之家青岛 5 天旅游预算(2024 年暑假)
一、开支项目及金额范围
1. 交通费用:2800 元 - 3400 元
- 城际交通(出发地:假设为济南,可根据实际出发地调整):
-
- 去程:济南西到青岛北高铁,成人票约 180 元 / 张,儿童票(1.4 米儿童享半价)约 90 元 / 张,3 人总费用 = 180×2 + 90=450 元;
-
- 返程:同去程,450 元;
-
- 依据:2024 年 4 月 12306 官网高铁票价(济南西 - 青岛北二等座票价 179.5 元,四舍五入为 180 元,儿童半价)。
- 市内交通:
-
- 费用:人均每日 30 元 - 40 元,3 人 5 天总费用 = 3×5×(30-40)=450 元 - 600 元;
-
- 依据:青岛市内交通以地铁、公交为主,地铁单程 2 元 - 5 元,公交 1 元 - 2 元,每日人均约 30 元 - 40 元(含偶尔打车费用,如从酒店到海鲜市场)。
- 城际 + 市内总交通费用:450+450+450-600=1350 元 - 1500 元?(此处修正:450 去程 + 450 返程 = 900,加上市内 450-600,总交通应为 1350-1500 元?注:原计算错误,正确总交通费用应为 900+450-600=1350 元 - 1500 元)
2. 住宿费用:2000 元 - 2500 元
- 费用:5 天总费用 2000 元 - 2500 元,日均 400 元 - 500 元;
- 依据:2024 年暑假青岛市区(如市南区、崂山区)三星级酒店双人房价格,日均 400 元 - 500 元(含早餐,10 岁儿童可与成人同住,无需额外付费);
- 建议:选择靠近地铁口的酒店,方便市内出行,可通过携程、美团提前预订,避开周末价格上涨(周末可能比平日贵 50 元 - 100 元 / 晚)。
3. 餐饮费用:1500 元 - 1800 元
- 费用:人均每日 100 元 - 120 元,3 人 5 天总费用 = 3×5×(100-120)=1500 元 - 1800 元;
- 依据:青岛餐饮价格 —— 早餐酒店含,午餐人均 30 元 - 40 元(如海鲜水饺、排骨米饭),晚餐人均 50 元 - 60 元(如海鲜大排档,3 人点 3-4 道菜,约 150 元 - 180 元),不含高档海鲜(如帝王蟹、龙虾,若需品尝需额外增加预算 500 元 - 1000 元)。
4. 门票费用:900 元 - 1100 元
- 具体项目:
-
- 崂山风景区:成人票 180 元 / 张(含景区观光车),儿童票 90 元 / 张(1.4 米儿童半价),3 人总费用 = 180×2 + 90=450 元;
-
- 青岛海底世界:成人票 150 元 / 张,儿童票 75 元 / 张,3 人总费用 = 150×2 + 75=375 元;
-
- 八大关景区:免费(开放式景区,无需门票);
-
- 小麦岛公园:免费;
- 依据:2024 年 4 月青岛各景区官网门票价格(暑假门票价格通常与平日一致,无大幅上涨);
- 总门票费用:450+375=825 元,预留 100 元 - 200 元用于临时增加的景区(如青岛啤酒博物馆,成人票 60 元 / 张),因此总范围 900 元 - 1100 元。
5. 购物费用(【不确定】):500 元 - 1000 元
- 费用:建议预算 500 元 - 1000 元;
- 依据:青岛特色商品(如青岛啤酒、海鲜干货、贝壳饰品)的大致价格,具体金额取决于购买种类和数量;
- 风险提示:该费用为估算值,实际可能因购物需求增加(如购买高档海鲜干货)而超支,建议提前确定购物清单,避免冲动消费。
6. 其他费用(保险、应急):300 元 - 500 元
- 旅游保险:3 人 5 天短期旅游意外险,约 100 元 - 150 元(依据:支付宝、微信保险平台报价,含意外医疗、行程延误保障);
- 应急费用:200 元 - 350 元(用于突发情况,如临时打车、购买急需物品);
- 总费用:100-150+200-350=300 元 - 500 元。
二、总预算范围
将所有项目相加:
- 最低总预算:1350(交通)+2000(住宿)+1500(餐饮)+900(门票)+500(购物)+300(其他)=6550 元;
- 最高总预算:1500(交通)+2500(住宿)+1800(餐饮)+1100(门票)+1000(购物)+500(其他)=8400 元;
- 最终总预算范围:6550 元 - 8400 元。”
6.3.4 效果分析
该提示词通过 “列出所有开支项目”“标注不确定费用”“补充应急费用”,有效避免了 “遗漏开支” 的 “预算幻觉”。比如,提示词明确要求列出 “保险、应急” 等容易忽略的项目,大模型不仅包含了这些内容,还对不确定的 “购物费用” 标注风险提示,让家庭在制定预算时能提前考虑潜在开支,避免实际旅游时超支。
7. 应对 “幻觉输出” 的常见误区与解决方法
在使用提示词应对 “幻觉输出” 时,很多用户会因方法不当,导致效果不佳。这部分总结 6 个常见误区,每个误区对应 “误区表现” 和 “解决方法”,帮助避开坑点,提升提示词效果。
7.1 误区 1:提示词过于简略,未明确 “具体要求”
7.1.1 误区表现
用户只说 “回答这个问题,不要有幻觉”,但未说明 “如何避免幻觉”(如是否需要注明来源、分步骤推导)。大模型无法理解具体需求,仍可能输出有 “幻觉” 的内容。
比如,用户问 “2023 年中国快递业务量是多少?”,提示词仅 “回答这个问题,不要有幻觉”。大模型可能回答 “2023 年中国快递业务量约 1300 亿件”,但未注明来源,无法判断数据是否真实,仍存在 “数据幻觉” 风险。
7.1.2 解决方法
提示词需明确 “具体要求”,比如 “注明数据来源”“分步骤推导”“标注不确定信息” 等。以快递业务量问题为例,提示词可改为:“请回答‘2023 年中国快递业务量是多少?’,要求:1. 给出具体数据;2. 注明数据来源(如 XX 机构 2023 年 X 月发布的 XX 报告);3. 若有同比增长率,一并说明。”
7.2 误区 2:要求 “超出大模型知识范围”,导致被迫 “幻觉”
7.2.1 误区表现
用户要求大模型回答 “2025 年中国新能源汽车的具体销量”“某未公开的企业内部数据” 等超出其知识范围的问题。大模型无法获取这些信息,却可能编造虚假数据,形成 “幻觉输出”。
比如,用户问 “2025 年中国新能源汽车销量会达到多少万辆?”,大模型的知识截止到 2024 年,无法预测 2025 年具体数据,可能会编造 “2025 年销量将达到 4500 万辆”,且无合理依据。
7.2.2 解决方法
提示词需 “符合大模型知识边界”,避免要求 “未来未发生数据”“未公开信息”。可将问题调整为 “基于 2024 年中国新能源汽车销量数据,预测 2025 年的增长趋势,并说明预测依据(如政策、市场需求)”。这样大模型能基于已有知识分析,避免编造数据。
7.3 误区 3:忽略 “场景细节”,导致解释不落地,变相 “幻觉”
7.3.1 误区表现
用户未说明具体场景,要求大模型 “给出提升销量的方法”“制定学习计划”。大模型给出的内容过于通用,无法落地,看似合理实则 “无效输出”,相当于变相的 “幻觉”。
比如,用户问 “如何提升奶茶店销量?”,提示词未说明 “奶茶店位置(如学校周边、商圈)”“目标客群(学生、上班族)”。大模型可能回答 “多做促销活动、提升产品质量”,但未结合场景,无法实际操作。
7.3.2 解决方法
提示词需 “补充场景细节”,让大模型结合具体场景输出。以奶茶店为例,提示词可改为:“请给出‘学校周边奶茶店(目标客群是学生)’提升销量的方法,要求:1. 每个方法结合学生需求(如性价比、口味多样性);2. 说明具体操作方式(如每周三学生凭学生证享 8 折)。”
7.4 误区 4:同时要求 “多个复杂任务”,导致顾此失彼
7.4.1 误区表现
用户在一个提示词中要求大模型 “撰写行业报告 + 分析竞品 + 预测趋势 + 给出建议”,任务过于复杂。大模型可能无法兼顾所有要求,导致部分内容出现 “幻觉”(如数据错误、逻辑混乱)。
比如,用户提示词:“请撰写《2024 年中国咖啡行业报告》,要求包含市场规模、竞品分析、未来 3 年趋势、开店建议,且所有数据注明来源。” 大模型可能在 “未来 3 年趋势” 部分编造虚假预测,且未注明依据。
7.4.2 解决方法
“拆分任务,分轮提示”。先让大模型 “撰写报告的市场规模部分,数据注明来源”;完成后,再提示 “基于市场规模数据,分析 3 个主要竞品的优劣势”;最后提示 “结合市场规模和竞品分析,给出未来 1 年的趋势预测”。分轮完成,确保每部分内容准确。
7.5 误区 5:不 “验证输出内容”,直接信任 “看似合理的幻觉”
7.5.1 误区表现
用户看到大模型输出的内容 “逻辑流畅、数据具体”,就直接信任,未验证数据来源、逻辑一致性。比如,大模型说 “2023 年中国在线教育市场规模 5000 亿元,来源是 XX 研究院”,用户未去 XX 研究院官网核实,直接引用,后来发现该数据是编造的。
7.5.2 解决方法
“必须验证输出内容”,尤其是关键数据、事实。可通过 3 种方式验证:1. 去权威平台(如国家统计局、行业研究院官网)核对数据;2. 检查逻辑是否矛盾(如前后数据是否一致);3. 用简单案例测试专业内容(如编程代码运行后看结果是否正确)。
7.6 误区 6:过度依赖 “提示词”,忽略 “人工判断”
7.6.1 误区表现
用户认为 “只要用了应对幻觉的提示词,大模型输出就一定准确”,完全不进行人工判断。比如,大模型给出的数学题解答步骤看似完整,但用户未检查公式是否用错,导致错误答案被使用。
7.6.2 解决方法
“提示词 + 人工判断” 结合。提示词是减少幻觉的工具,但不能完全替代人工检查。尤其是重要场景(如商业决策、专业报告),需人工核对关键信息:数据是否有权威来源、逻辑是否严谨、是否符合实际需求。
8. 工具辅助:提升提示词效果的实用工具
除了提示词策略,一些工具能进一步帮助减少 “幻觉输出”,比如辅助梳理提示词结构、验证数据准确性、优化表达。这部分介绍 4 类实用工具,每个工具包含 “工具名称”“核心功能”“使用场景”“操作示例”。
8.1 提示词结构梳理工具:PromptBase(在线市场)
8.1.1 核心功能
提供大量 “应对幻觉输出” 的现成提示词模板(如 “数据类问题提示词”“专业解题提示词”),用户可直接使用或修改,避免手动编写时遗漏关键要求。模板由专业人士设计,符合大模型理解习惯。
8.1.2 使用场景
适合提示词新手,或需要快速生成 “复杂提示词”(如要求 “注明来源 + 分步骤推导 + 标注不确定信息”)的场景。
8.1.3 操作示例
- 打开 PromptBase 官网(需注册,部分模板免费);
- 在搜索栏输入 “避免幻觉 数据类提示词”;
- 选择模板 “数据查询类问题防幻觉提示词”,模板内容为:“请回答【具体问题】,要求:1. 所有数据注明权威来源(如 XX 机构 202X 年 X 月报告);2. 若数据为估算值,用‘【估算】’标注,并说明估算依据;3. 补充数据统计口径(如‘用户规模包含 XX 人群’)。”;
- 将模板中的 “【具体问题】” 替换为 “2023 年中国快递业务量是多少?”,复制到大模型中,即可获得准确输出。
8.2 数据准确性验证工具:国家统计局官网(权威平台)
8.2.1 核心功能
提供全国宏观经济数据、行业数据(如 GDP、快递业务量、新能源汽车销量),可验证大模型输出的数据是否真实,避免 “数据幻觉”。
8.2.2 使用场景
当大模型输出 “宏观数据”“行业统计数据” 时,需验证其准确性,比如企业撰写报告、学生做调研时。
8.2.3 操作示例
- 在搜索栏输入 “2023 年中国快递业务量”;
- 找到 “2023 年国民经济和社会发展统计公报”,查看其中 “交通运输、邮电和仓储业” 部分,显示 “2023 年全国快递业务量 1315 亿件”;
- 对比大模型输出的数据,若大模型说 “2023 年快递业务量 1315 亿件,来源国家统计局 2024 年 2 月统计公报”,则数据准确;若大模型说 “1500 亿件”,则为 “幻觉”。
8.3 专业内容验证工具:编程编译器(如 Python IDLE、在线 IDE)
8.3.1 核心功能
用于验证大模型输出的编程代码是否能正确运行,是否符合需求,避免 “专业错误幻觉”(如代码逻辑错误、语法错误)。
8.3.2 使用场景
当大模型输出 “编程代码”(如 Python、Java 代码)时,比如程序员找解决问题的代码、学生完成编程作业时。
8.3.3 操作示例
- 大模型输出 “计算 1 到 100 累加和的 Python 代码”:
sum_total = 0
for i in range (1, 101):
sum_total += i
print (sum_total)
- 打开 Python IDLE,将代码复制进去,点击 “运行”;
- 运行结果显示 “5050”,与正确答案一致,说明代码无错误;若大模型代码中的 range (1,100),运行结果为 “4950”,则可发现错误。
8.4 提示词优化工具:ChatGPT Prompt Tuner(浏览器插件)
8.4.1 核心功能
分析用户输入的提示词,指出 “可能导致幻觉的问题”(如 “未注明数据来源要求”“场景细节不足”),并给出优化建议,帮助用户完善提示词。
8.4.2 使用场景
用户编写提示词后,不确定是否存在漏洞,需要进一步优化时,比如撰写重要报告、解答专业问题前。
8.4.3 操作示例
- 安装 ChatGPT Prompt Tuner 浏览器插件(支持 Chrome、Edge);
- 在插件中输入原始提示词:“请回答‘如何提升电商店铺销量?’”;
- 插件分析后提示:“问题:1. 未说明电商店铺类型(如服装、家电);2. 未要求输出内容的依据(如是否需要案例支撑)。优化建议:补充‘目标店铺类型(如服装类电商)’,并要求‘每个方法结合 1 个实际案例’。”;
- 根据建议修改提示词为:“请给出‘服装类电商店铺’提升销量的方法,要求每个方法结合 1 个实际案例(如某店铺用 XX 方法提升销量 20%)。”
9. 常见问题解答(FAQ)
在使用提示词应对 “幻觉输出” 的过程中,用户常遇到一些疑问。这部分解答 8 个高频问题,帮助快速解决实际使用中的困惑。
9.1 问题 1:如果大模型不按照提示词要求输出(如不注明数据来源),该怎么办?
解答:首先检查提示词是否 “清晰具体”,若提示词只说 “注明来源”,可修改为 “每个数据必须注明‘XX 机构 202X 年 X 月发布的 XX 报告’,若无法找到来源,需说明‘暂未找到权威来源’”。若仍不按要求输出,可在提示词开头加上 “请严格按照以下要求回答,未满足要求的内容将视为无效:1. ……2. ……”,强化要求的重要性。
9.2 问题 2:如何让大模型主动 “承认不知道”,而不是编造 “幻觉”?
解答:在提示词中明确 “若无法回答,直接说明‘该问题超出我的知识范围,无法准确回答’,不要编造信息”。比如提示词:“请回答‘某未上市企业 2023 年的净利润是多少?’,要求:1. 若能找到公开数据,注明来源;2. 若无法找到,直接说明‘该数据未公开,无法准确回答’,不要编造。”
9.3 问题 3:对于 “主观性强的问题”(如 “哪种奶茶口味最好喝”),如何避免大模型 “片面幻觉”?
解答:提示词需要求大模型 “列出多种可能性,并说明适用人群”,避免武断结论。比如提示词:“请分析‘哪种奶茶口味最好喝’,要求:1. 列出 3 种受欢迎的口味(如珍珠奶茶、杨枝甘露、抹茶奶茶);2. 每种口味说明适用人群(如珍珠奶茶适合喜欢有嚼劲口感的用户);3. 不给出‘绝对最好喝’的结论,强调‘因人而异’。”
9.4 问题 4:大模型输出的内容 “部分准确、部分有幻觉”,该如何处理?
解答:分两步处理:1. 先筛选出 “准确部分”(如数据有权威来源、逻辑无矛盾的内容);2. 对 “有幻觉部分”,重新编写提示词,针对性修正。比如大模型回答 “2023 年中国快递业务量 1315 亿件(来源国家统计局),同比增长 15%(无来源)”,可重新提示:“请补充‘2023 年中国快递业务量同比增长率’的权威来源,若无法找到,说明‘暂未找到明确数据’。”
9.5 问题 5:不同大模型(如 ChatGPT、文心一言)的提示词策略是否通用?
解答:核心策略(如 “注明来源”“分步骤推导”)通用,但需根据大模型的 “特点微调”。比如文心一言对 “中文场景细节” 更敏感,提示词可多补充中文语境的细节;ChatGPT 对 “逻辑推导步骤” 要求更高,提示词可更强调 “每步说明依据”。
9.6 问题 6:对于 “长文本输出”(如万字报告),如何避免中间出现 “幻觉”?
解答:采用 “分段提示 + 逐段验证” 的方式。先让大模型输出报告的 “第一部分(如市场规模)”,验证准确后,再提示 “基于第一部分的市场规模数据,输出第二部分(如竞品分析)”,以此类推。每段输出后,检查数据来源、逻辑是否有问题,避免中间段落出现幻觉。
9.7 问题 7:提示词中是否需要 “使用专业术语”,才能减少幻觉?
解答:不需要。提示词应 “简单直接,避免专业术语”,确保大模型能准确理解。比如要求 “注明数据来源”,无需说 “提供数据的权威信源标识”;要求 “分步骤推导”,无需说 “采用分步式逻辑推演框架”。过于复杂的表述反而可能让大模型误解。
9.8 问题 8:是否有 “万能提示词模板”,能应对所有类型的幻觉?
解答:没有 “万能模板”,但有 “通用核心框架”,可根据场景调整。通用框架:“请回答【具体问题】,要求:1. 若涉及数据 / 事实,注明权威来源(如 XX 机构 202X 年 X 月报告);2. 若涉及逻辑推导,分步骤说明,每步注明依据(如公式、定理);3. 若存在不确定信息,用‘【不确定】’标注,并给出风险提示;4. 结合【具体场景细节】输出,避免通用内容。”