安装pytorch时ERROR:Could not find a version thatsatisfies the requirement torch

我的尝试解决过程:
1.使用清华镜像源----报错
2.切换至官方 PyPI 源----报错
3.切换python版本,尝试了 python3.6 和python3.12.6------也报错
4.按照pytorch官网提示( 官网说windows的torch只支持到python3.7-python3.9 ),尝试安装python3.9.12------成功!!!

下面是我的解决历程......有点曲折,希望能给大家带来一点帮助

基于python3.9.12(win64)安装pytorch的过程

下面我们来演示一下基于python3.9.12(win64)安装pytorch的过程......

对了开始之前先把原来的python清理干净(有的系统可能会有影响)

卸载方法一演示:

1.下载压缩包

点击下方卡片进入官网

Welcome to Python.orgThe official home of the Python Programming Languagehttps://www.python.org/

注意有的python3.9.x没有可用版本

往下滑,找到下图,点击下载

2.解压缩包安装python3.9.12 

 建议解压前先新建一个文件夹存放python

找到你下载好的python-3.9.12-amd64.exe文件  双击它

点击next 

选存放位置(默认在C盘,但是不建议) 

 点击install

安装完成

3.检查(给开头没有点击添加路径的朋友)

桌面上的此电脑(右键)-->选择属性-->查看高级系统设置-->高级-->环境变量

选中path-->点击编辑

新建两个路径(这个是你的python安装路径)-->确定

这是我的安装位置

单击上面路径可以复制

4.测试是否安装成功 

win键+R-->输入cmd

输入python,显示的是python3.9的版本就下载成功了,成功的朋友可以用正常方法下载pytorch了

(如果显示以前的python版本,先确认自己的旧版本有没有删干净,然后再查看高级系统设置的path路径有没有问题,是不是python3.9的安装路径)

5. 如果还有问题(我......)

可以看看自己以前是不是下载过Anaconda而且还配过环境 ( 问了一下大佬,大佬说是我的环境已经被Anoaconda接管了......)

于是我打算在anaconda里面建一下python3.9环境, 基于这个虚拟环境安装 pytorch,再在项目里面用

5.1删除以前的虚拟环境

首先进入Anaconda Prompt

输入conda info -e 命令, 查看虚拟环境列表 ( 我的在两个地方都装过anaconda)(现在我的高级系统设置里面的Anaconda的path路径在E:\Anaconda2024.06,所以显示的base也在那)

输入 conda remove -n pytorch --all   ( pytorch是环境名字 , 大家根据自己的环境名字删)

(我删除是因为之前在anaconda这基于python3.12.8安装过pytorch, 我把环境的名字叫做pytorch)

输入y 

 检查一下有没有删掉

删除成功! 

5.2. anaconda3配置python3.9.12(win10)

5.2.1更改conda源

(下载第三方库会更快) 我的改成了清华大学镜像源

在命令行输入下面命令

conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/

conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge

conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/msys2/

conda config --set show_channel_urls yes  //设置搜索时显示通道地址

conda config --show channels  //查看是否修改好通道

conda init  //初始化
 5.2.2创建环境

输入命令   conda create -n python3.9.12 python=3.9.12

输入y

查看列表 conda env list

激活环境 conda activate python3.9.12

到这里我们的python3.9.12的虚拟环境就已经安装好啦 

下面我们去安装pytorch(先不要关闭Anaconda Promt)

5.3pytorch的安装

5.3.1pytorch的下载(cpu版)

进入pytorch官网

PyTorchPyTorch Foundation is the deep learning community home for the open source PyTorch framework and ecosystem.https://pytorch.org/往下滑 可以看到

 电脑为集体显卡或者显卡为AMD,直接选择CPU版本。选择之后,会有相应的安装命令:

pip3 install torch torchvision torchaudio

这里大家根据自己的电脑硬件配置去选择对应的版本,电脑里面有英伟达显卡的可以去选CUDA (具体的版本要根据显卡的版本选择,这里就不赘述了,大家可以去找别的教程)

在我们刚刚激活的python3.9.12环境下输入

pip install torch torchvision torchaudio

5.3.2 验证pytorch是否安装成功

去pycharm项目里面改一下python解释器, 改成咱们刚刚配置好的虚拟环境

这个路径选择大家自己的Anaconda的路径

新建一个空的.py文件 , 输入下面代码  运行一下

# 查看 pytorch 版本 若出现则说明安装成功。
import torch
print (torch.__version__)

缺什么包就 pip install + 包名

出现 版本号就说明安装成功了!!!

### 解决 PyTorch 安装错误 当遇到 `Could not find a version that satisfies the requirement torch` 错误,这通常意味着所使用的 Python 版本与尝试安装PyTorch 软件包不兼容。对于特定版本的 PyTorchPython 的组合,官方提供了详细的安装指南。 为了确保正确安装指定版本的 PyTorch 0.4 并解决上述问题,建议按照以下方法操作: #### 方法一:创建虚拟环境并安装所需依赖项 通过 Conda 创建一个新的虚拟环境来隔离项目所需的库和工具链是一个好办法。这样可以避免不同项目的依赖冲突,并能更轻松地管理各个软件包的具体版本。 ```bash conda create --name pytorch_env python=3.6 conda activate pytorch_env pip install http://download.pytorch.org/whl/cpu/torch-0.4.0-cp36-cp36m-win_amd64.whl ``` 这种方法有助于保持系统的整洁以及减少潜在的兼容性问题[^1]。 #### 方法二:处理已存在的更高版本 PyTorch 导致的问题 如果已经存在较新版本的 PyTorch 或其他相关组件,则可能会引发类似的错误消息。在这种情况下,可能需要先卸载现有的 PyTorch 及其附属模块再重新安装目标版本。 ```bash pip uninstall torch torchvision torchaudio tensorboardX pip install http://download.pytorch.org/whl/cpu/torch-0.4.0-cp36-cp36m-win_amd64.whl ``` 需要注意的是,在某些环境中,特别是 Linux 上,由于路径差异等原因可能导致直接从 URL 安装失败;此可以从本地文件系统执行相同的操作或者考虑使用 conda 渠道获取相应资源[^3]。 另外,关于提到的 `AttributeError: module 'distutils' has no attribute 'version'` 报错情况,这是因为在 Python 3.10 中移除了对 `LooseVersion` 的支持所致。因此推荐降级至较低版本如 Python 3.8 来规避此问题[^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值