首先,我需要使用GRU神经网络进行预测。GRU是Gated Recurrent Unit的缩写,是一种常用的循环神经网络结构,适用于序列数据的预测任务。
但是,我需要确保MATLAB支持GRU网络的创建和训练。让我想想,MATLAB的Deep Learning Toolbox提供了设计和训练神经网络的功能,包括GRU层。
等等,我需要确认一下如何在MATLAB中创建包含GRU层的网络。
好的,那我就开始写代码吧。
首先,我需要准备一些数据来进行训练和预测。由于题目没有提供具体的数据,我假设我们有一个时间序列数据集,用于预测未来的值。
% 生成示例时间序列数据
data = sin(0:0.1:10) + 0.5*randn(1,101);
等等,这样生成的数据是一个正弦波加上一些噪声。
好的,接下来,我需要将数据分为训练集和测试集。
% 分割数据为训练集和测试集
numTimeSteps = length(data);
trainFraction = 0.7;
trainData = data(1:floor(trainFraction*numTimeSteps));
testData = data(floor(trainFraction*numTimeSteps)+1:end);
等等,我将70%的数据用于训练,30%用于测试。
好的,接下来,我需要创建一个包含GRU层的序列到序列的回归网络。
% 定义网络架构
numFeatures = 1; % 输入特征数
numResponses = 1; % 输出响应数
numHiddenUnits = 200; % GRU层的隐藏单元数
layers = [ ...
sequenceInputLayer(numFeatures)
gruLayer(numHiddenUnits, 'OutputMode', 'sequence')
fullyConnectedLayer(numResponses)
regressionLayer];
% 查看网络架构
layerGraph = layerGraph(layers);
plot(layerGraph);
等等,我创建了一个序列输入层,一个GRU层,一个全连接层,以及一个回归层。
好的,接下来,我需要配置训练选项。
% 配置训练选项
options = trainingOptions('adam', ...
'MaxEpochs', 100, ...
'GradientThreshold', 1, ...
'InitialLearnRate', 0.005, ...
'LearnRateSchedule', 'pi