更改Jupyter Notebook的默认路径和Kernel

1、定位Jupyter Noteboo的配置文件

  • 使用快捷键【Win+R】打开【cmd】
  • 输入以下命令找到自己Jupyter的配置文件地址
jupyter notebook --generate-config

2314e0864c5a49528db2309272f0456b.png按照上述图片中的路径去寻找配置文件

2、更改Jupyter Notebook的路径配置

9a20a2969274476eb048facbb5badd26.png

用记事本打开上述文档,用【Ctrl+F】查找这个变量c.NotebookApp.notebook_dir的路径,该路径代表自己jupyter的默认路径

bf091da6a08c4ba594aa1012301a1a1e.png

3、更改Jupyter Notebook的属性

dce098ea4c8d442f990a28375e01f448.png

  • 打开Jupyter Notebook的文件位置,右键打开属性,修改目标起始位置
  • 删掉【"%USERPROFILE%"】
  • 将起始位置的【%HOMEPATH%】更改为想要放置的jupyter工作路径

b1d3c58b731d463495ab2c1407133af8.png949df63add8b4fe8bfcd49d45058dd4b.png

4、更改Jupyter Notebook的kernel

首先,使用快捷键【Win+R】打开【cmd】并切换到自己的虚拟环境中

3cb55f887f454852a99630b27b12169f.png

在自己的虚拟环境中安装ipykernel(默认大家没有安装,如果安装了则可以跳过下面的代码)

python -m pip install ipykernel -i https://pypi.tuna.tsinghua.edu.cn/simple

由于一开始安装的时候爆红,于是我加了清华镜像源-i https://pypi.tuna.tsinghua.edu.cn/simple,这样就基本上不会报错了

3f047352bf81416294e10c9fd45c4f62.png

然后安装成功后,为Jupyter Notebook添加内核

【python -m ipykernel install --user --name=kernelname  --display-name showname】
kernelname是你的虚拟环境名称,showname是在Jupyter Notebook中内核的名称,两个名称最好取一样的,避免混淆。

python -m ipykernel install --user --name=pytorch  --display-name pytorch

352f0a10ba824fd6b2bd3dacb1750bc7.png现在已经安装好Kernel了,去Jupyter Notebook看一下

a9a7b9249625483180a6eab9a8fdb576.png

接下来如果要查看Jupyter Notebook有哪些安装好了的Kernel,可以使用以下命令

jupyter kernelspec list

如果需要移除一些没用的Kernel,可以使用以下命令

jupyter kernelspec remove kernelname

 

### 修改 Jupyter Notebook 中 TensorFlow 的默认路径 对于希望更改 Jupyter Notebook 中 TensorFlow 相关的默认路径设置的情况,主要操作集中在两个方面:一是调整 Jupyter Notebook 自身启动的工作目录;二是确保 TensorFlow 安装于期望的 Python 环境下。 #### 更改 Jupyter Notebook 启动位置 当需要改变 Jupyter Notebook 默认打开的位置时,可以创建配置文件来指定工作目录。如果尚未存在配置文件,则可通过命令 `jupyter notebook --generate-config` 来生成,默认情况下该配置文件位于用户的主目录下的 `.jupyter/jupyter_notebook_config.py` 文件内[^1]。 为了设定特定的笔记本启动路径,在上述配置文件中找到如下参数并取消注释: ```python c.NotebookApp.notebook_dir = '/path/to/your/directory' ``` 将 `/path/to/your/directory` 替换成想要作为新的默认路径的具体地址即可。 #### 设置 TensorFlow 工作环境 考虑到 TensorFlow 及其 GPU 版本可能依赖特定版本的库编译器支持,建议在一个独立的 Conda 或者虚拟环境中管理这些依赖关系。这可以通过以下方式实现: - 创建一个新的 Conda 环境用于安装 TensorFlow 其他必要的包,比如通过命令 `conda create -n tf_env python=3.x anaconda` (其中 x 表示具体的次要版本号)。 - 激活新创建的环境 `(tf_env)` 并执行相应的安装指令如 `pip install tensorflow` 或针对 GPU 加速版则为 `pip install tensorflow-gpu`[^2]。 - 如果打算让此自定义环境中的 TensorFlow 对应的 Kernel 显示在 Jupyter Notebook 下拉菜单选项里,还需要额外安装 `ipykernel` 并将其注册给当前活跃的 Conda 环境,即运行 `conda install ipykernel` 接着调用 `python -m ipykernel install --user --name=tf_env --display-name "Python (tf_env)"`[^4]。 完成以上步骤之后,每次启动 Jupyter Notebook 时都可以选择对应的编程环境来进行开发测试活动了。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

布灵布灵磊少

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值