相信大家看了我的前几期教程以后,实验指定都是做的差不多了,看来大家也已经到了要水论文的阶段了吧,嘿嘿嘿~~~本期,俺就教大家如何无痛入门,水一篇论文~~~~
我先随便写一篇毫无意义的论文在下面,尽量保证每个章节,每个地方都有数据,然后再教大家如何屎盆子镶金边
———————————————————————————————————————————
基于改进YOLOv8的头部检测
Jason wu
摘要:头部检测那可是现代目标检测领域的一个重要的研究方向呀,不仅可以上课查看学生有没有低头睡觉,也可以用来判断一个班级学习氛围到底好不好,还可以放在公共场所判断人流量之类的,总而言之,言而总之,对于头部检测的研究还是很有必要滴。传统的头部检测方法速度慢,精度低,俺们提出了一种新的头部检测算法,往YOLOv8的骨干网络和颈部网络连接处插了三个CBAM注意力模块,然后在SCUT-HEAD头部检测数据集上进行了实验,实验结果表明,俺们的模型那是大大的好啊,速度快,精度高,模型小,完完全全那是吊打YOLOv8,所以,俺们认为本文提出的模型在给小学生增加学习压力以及防止大学生不上早八具有重要意义。
索引术语:YOLOv8, CBAM,头部检测,小学生
1. 引言
头部检测怎么怎么重要,小学生上课怎么怎么不认真,大学生怎么怎么猛猛逃课,俺这里就不赘述了,总是研究就是有意义。
2. 相关工作
传统的头部检测是在拿什么方法做,RGB图像啦,深度学习啦,机器学习啦,或者直接热力图分析啥的,这部分多看看论文,多看看综述,指定能写出来的,总之就是以上工作俺都觉得一般,不如我的工作的一根。
3. 算法设计
3.1 YOLOv8算法介绍
YOLOv8这个模型那是大大滴好啊,好在哪儿呢,好就好在模型小,结构优秀,既有YOLOv7的c2f结构,又有YOLOv6的解耦头,还有分布式焦点损失,甚至还有YOLOX的提前10轮关闭数据增强这一骚操作,总之就是高级得很,除了名字是自己的,其他全是缝的。
3.2 YOLOv8的不足与改进思路
YOLOv8就这,俺也觉得他这模型一般般,咋一般般捏,我觉得它特征提的不够深,直接提完就传给颈部网络开始特征金字塔了,我觉得8太行,我的建议是加个注意力,少壮不努力,毕业注意力嘛。
3.3 JSON-YOLOv8
直接开始展示咋改的,我这里就手绘一个改进图,不细说了。
再介绍一下什么是CBAM
这里直接看论文就完了,把CBAM的公式,原理啥的推一推,结束。
4. 实验与结果
4.1 实验配置
本实验的实验配置那是相当上档次的,2022年买的外星人m15r7,12代i7,加上3060(6GB),上次在咸鱼那人直接跟我说4000给我收了,我人都麻了,4000还不到我买的时候的零头。
这里说说操作系统,win11,pytorch2.0.1,python3.10.8,输入图像尺寸640*640,只开100轮,学习率,权重衰减系数啥的直接看代码,我这里就不介绍了。
4.2 评估系数
介绍一下什么是准确度(Precision)、召回率(Recall)、平均准确度(Average Precision, AP)、平均准确率(mean Average Precision, mAP)和F1分数(F1 Score)。
公式啥的这里放一放,举个例子:
平均准确率(mean Average Precision, mAP):
其中,K是检测到的目标类别总数,APi是第i个类别的平均准确度。
4.3 消融实验
本次实验就改了一丢丢,就做那个加和不加的实验就完了,令原模型为baseline,本文改的模型前面取了个名字,叫JSON-YOLOv8,这里就可以摆摆数据结果啥的。俺直接上图
从这张图里一看,俺们的模型那真是大大滴好啊,哈哈哈哈
4.3 对比实验
俺在看看俺们的结果跟其他模型比咋样捏
总之就是精度高的比我大,精度低的,那还叫什么,精度都没我高,爪巴。推理比我快的精度低,推理比我慢的,那更别叫,总结一句话,俺的模型最屌。
4.4 结果可视化对比实验
这里我就随便放张图了,这实验我确实没整过,嘿嘿