ZEMAX优化方法---【Zemax学习】

前言与目录

ZEMAX优化方法介绍;在光学系统自动设计中,优化设计是光学设计中的重要阶段,也是ZEMAX软件的核心功能,涉及评价函数、权因子、阻尼因子等重要概念。在常用的阻尼最小二乘法优化设计的基础上,ZEMAX给我们提供了三种优化选择:Optimization(局部优化)、Global Search(全局优化)和 Hammer Optimization(锤形优化)。


目录

一、ZEMAX优化方法介绍

二、阻尼最小二乘法和正交下降法(自适应法)

三、实例展示

1、35mm 相机底片

2、透镜材料解析

3、 基础参数解析

4、具体步骤

步骤一:入瞳设置

步骤二:视场设置

步骤三: 波长设置

步骤四:初始结构设置

步骤五:设置F数求解

5、zemax优化

6、系统评价

四、总结


一、ZEMAX优化方法介绍

在光学系统自动设计中,优化设计是光学设计中的重要阶段,也是ZEMAX软件的核心功能,涉及评价函数、权因子、阻尼因子等重要概念。在常用的阻尼最小二乘法优化设计的基础上,ZEMAX给我们提供了三种优化选择:Optimization(局部优化)、Global Search(全局优化)和 Hammer Optimization(锤形优化)。

图1

1、局部优化(Local Optimization):

局部优化是一种从系统初始结构出发,寻找局部最小值的优化方法。它依赖于初始结构,优化过程中评价函数逐渐降低,直至达到最低点,这个最低点可能是局部最优而非全局最优。这里的最低点是指再优化评价函数就会上升,不管是不是优化到了最佳结构(软件认为的最佳指评价函数最小的结构)。 

局部优化的缺点包括:

依赖初始结构:如果初始结构选择不当,可能会陷入较差的局部最优解,无法得到全局最优的设计结果。

搜索范围有限:通常只在初始结构附近的解空间内进行搜索,可能导致优化结果受限于初始结构的邻域,无法探索到更广泛的解空间。

可能陷入局部最优:特别是当评价函数存在多个局部最小值时,优化方法容易陷入局部最优解,而不是全局最优解。

2、全局优化(Global Optimization)

全局优化是一种全域搜索方法,使用多起点同时优化的算法,目的是找到系统所有可能的结构组合,并判断哪个结构使评价函数值最小。

全局优化的优势在于更有可能找到全局最优解,因为它考虑了更多的解空间,这对于复杂的光学系统设计特别有用。

然而,全局优化的局限性在于通常比局部搜索更慢,因为它需要评估更多的解,且可能受到计算资源的限制,特别是在处理大型和复杂的光学系统时。

3、锤形优化(Hammer Optimization)

锤形优化是ZEMAX提供的全局优化方法的一种,它结合了全局搜索和局部优化的特点。锤形优化在全局搜索找到最佳结构组合后,进一步锤炼这个结构。

锤形优化加入了专家算法,可以帮助设计师按照有经验的设计方法处理系统结果。它不仅关注形状的优化,还通过调整玻璃类型和渐晕等参数来进一步提升系统性能。

锤形优化适用于先用全局优化找到大概值后,进一步完善光学系统。

图1中的执行优化就是指执行局部优化;而 Global Search 和 Hammer Optimization 都属于全局优化类,只要给出足够多的优化时间,它们总能找到最佳结构。全局优化使用多起点同时优化的算法,目的是找到系统所有的结构组合形式并判断哪个结构使评价函数值最小。而锤形优化虽然也属于全局优化类,但它更倾向于局部优化,一旦使用全局搜索找到了最佳结构组合,便可使用锤形优化来锤炼这个结构。图2可以很好地说明全局优化和局部优化的关系。

图2:全局优化与局部优化关系图

二、阻尼最小二乘法和正交下降法(自适应法)

目前国内外成像光学系统自动设计主要基于ZEMAX和CODEV两种软件,二者各有特点。在光学系统自动设计中,优化设ZEMAX窗口简洁明了,便于操作,价格低,使用更广泛。

光学系统自动设计通常采用两种方法:阻尼最小二乘法和自适应法。其中,阻尼最小二乘法应用更广泛,主要原因在于:

①阻尼最小二乘法能自然确定镜头设计的优化函数为一组像差的平方和;

②对于给定的设计参数,阻尼最小二乘法能自动给出一组最佳的参数变化量;

③虽然像差是非线性函数,但当像差接近最小值时,像差可看作是线性的。目前国内外成像光学系统自动设计主要基于ZEMAX和CODEV两种软件,二者各有特点。

1、阻尼最小二乘法(Damped Least Squares, DLS)

### Zemax优化策略与解决方案 Zemax是一款广泛应用于光学设计和分析的强大工具,其中的优化功能是实现高质量光学系统的关键所在。以下是关于Zemax优化的核心思路以及具体实施方案。 #### 1. 优化目标的选择 在Zemax中,优化的目标通常由Merit Function决定。Merit Function是一个综合指标,用于衡量当前系统的性能是否接近理想状态。常见的Merit Function类型包括: - **RMS(均方根)** RMS是一种常用的评价标准,它通过对所有光线误差取平方并求平均后再开方来量化整体偏差的程度[^1]。这种方法适用于追求全局最优解的情况,尤其当希望减少整个光束中的波动时非常有效。 - **PTV(峰谷值)** PTV代表最大与最小波前误差之间的差异,适合于某些特殊场景下的应用需求,比如需要确保每一条光线都能落在特定区域内的场合[^1]。相比起RMS,PTV更关注极端情况的表现。 #### 2. 参数调整方法论 为了达到理想的Merit Function数值,在设置好初始结构之后还需要合理配置可变参数(variables),这些变量可能涉及到镜片曲率、厚度间隔或者材料折射率等方面的变化量程设定;另外也要指定约束条件(constraints),防止因过度自由而导致不合理的结果出现。 ```python def set_variables_and_constraints(): """ 设置Zemax中的变量和约束条件 """ variables = ["curvature", "thickness", "material_index"] constraints = { "min_curvature": -0.05, "max_thickness": 10.0, "valid_material_indices": [1.5, 1.6, 1.7] } return variables, constraints ``` #### 3. 运用Optimization Wizard简化流程 对于初学者而言,直接编写复杂的Merit Functions可能会显得有些困难,这时就可以利用内置的`Optimization Wizard`对话框来进行指导性的操作。该向导提供了预设模板供用户快速启动项目,并允许自定义修改以适应个性化的要求。 #### 4. 结果验证与迭代改进 完成一轮初步优化后,应当仔细审查所得数据的有效性和合理性。必要时重新审视先前所作假设是否存在缺陷,并据此作出相应修正直至满意为止。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值