机器学习--主成分分析(PCA)

目录

一、简介

1.1 PCA算法简介 

1.2 PCA算法流程

1.3 PCA算法功能 

二、算法实现

2.1 准备数据集

2.2 利用PCA进行降维

2.3 分类结果可视化

三、代码整合及小结

3.1 完整代码整合

3.2 小结


一、简介

1.1 PCA算法简介 


  PCA 是 (Principal Component Analysis )的缩写,中文称为主成分分析法。它是一种维数约减(Dimensionality Reduction)算法,即把高维度数据在损失最小的情况下转换为低维度数据的算法。 显然,PCA 可以用来对数据进行压缩,可以在可控的失真范围内提高运算速度,提高机器学习的效率,使较为复杂的数据简单化。

  所谓损失最小就是从高维向低维映射的时候误差最小,低维空间的描述是向量组,k维空间就用k个向量来描述这个空间。

1.2 PCA算法流程

流程解释:

  一个协方差矩阵有着不同的特征值与特征向量,最高特征值的对应的特征向量就是这个数据集的主成分。通常来说,一旦协方差矩阵的特征值和特征向量被计算出来了之后,就是按照特征值的大小从高到低依次排列。特征值的大小确定了主成分的重要性。
   主成分分析的基本原理就是:选择特征值较大的作为主成分,从而进行降维。
比如:一开始数据集是N维的,在进行了协方差矩阵的特征值计算后,得到了N个特征值和与这些特征值相对应的特征向量。然后在主成分分析时,选取了前P个较大的特征值,如此一来,就将原来N维的数据降维到只有P维。这样就起到了降维的效果了。

1.3 PCA算法功能 


PCA算法在机器学习中有许多用途,如:

1. 降维
 PCA可以将高维数据集降到更低的维度,减少数据存储和处理的开销。

 2. 压缩
 PCA可以将数据集表示为比原始数据集更紧凑的形式,可以用于数据压缩。

3. 特征提取
 PCA可以从原始数据集中提取最重要的特征,这些特征可以用于构建更好的模型。

 4. 去噪
 PCA可以帮助我们去除噪声,并且使数据集更具可分性。

二、算法实现

2.1 准备数据集

准备数据集:导入Scikit-learn库中的鸢尾花数据集


                
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值