跑路了,暑期0offer,华为主管面挂了,真幽默,性格测评就挂了居然给我一路放到主管面,科大迅飞太嚣张,直接跟人说后面要面华为,元戎启行,学了C++后python完全忘了怎么写,挺尴尬的,一面挂,想着做视觉后面也找不到工作,跑路,科大和元戎的面试官都挺好的,华为技术面感觉面完啥也没学到,再见,计算机视觉
1.求x的平方根,梯度下降法
def gradient_descent_sqrt(a, eta=0.001, max_iter=1000, tol=1e-6):
x = a / 2 # 初始值
for _ in range(max_iter):
grad = 4 * x * (x**2 - a) # 计算梯度
x = x - eta * grad # 更新
if abs(grad) < tol: # 停止条件
break
return round(x, 3)
a = 9
result = gradient_descent_sqrt(a)
print("Gradient Descent Result:", result)
牛顿法
def newton_method_sqrt(a, max_iter=1000, tol=1e-6):
x = a / 2 # 初始值
for _ in range(max_iter):
x_new = 0.5 * (x + a / x) # 牛顿法更新公式
if abs(x_new - x) < tol: # 停止条件
break
x = x_new
return round(x, 3)
result = newton_method_sqrt(a)
print("Newton's Method Result:", result)
2.xgboost,lightgbm,catboost,直接看链接
详解 CatBoost 原理-CSDN博客文章浏览阅读1.7w次,点赞36次,收藏129次。详解 CatBoost 原理集成学习的两大准则:基学习器的准确性和多样性。算法:串行的Boosting和并行的Bagging,前者通过错判训练样本重新赋权来重复训练,来提高基学习器的准确性,降低偏差!后者通过采样方法,训练出多样性的基学习器,降低方差。1.catboost 的优缺点性能卓越:在性能方面可以匹敌任何先进的机器学习算法鲁棒性/强健性:它减少了对很多超参数调优的需求,并降低了过度拟合的机会,这也使得模型变得更加具有通用性易于使用:提供与 scikit 集成的 Python 接口,以及_catboosthttps://blog.csdn.net/weixin_49708196/article/details/124018649机器学习—LightGBM的原理、优化以及优缺点_lightgbm优缺点-CSDN博客文章浏览阅读2.4w次,点赞78次,收藏225次。LightGBM是为解决GBDT在海量数据中的效率问题而提出的,通过直方图算法、单边梯度采样、互斥特征捆绑和带深度限制的Leaf-wise算法实现速度和内存的优化。与XGBoost相比,LightGBM在内存占用和计算速度上具有显著优势,同时支持类别特征,并行计算和缓存优化。然而,Leaf-wise策略可能导致过拟合,需要设置最大深度限制。
https://blog.csdn.net/weixin_46649052/article/details/119604545【机器学习】XGBoost数学原理及详细实现过程_xgboost的数学原理-CSDN博客文章浏览阅读3.8k次,点赞6次,收藏42次。XGBoost(Extreme Gradient Boosting)是一种高效的梯度提升决策树算法,与lightgbm是目前表格型数据竞赛最主流的树模型。它在原有的GBDT(Gradient Boosting Decision Tree)基础上进行了改进,使得模型效果得到大大提升。XGBoost是由多棵CART(Classification And Regression Tree)组成,因此它不仅可以处理分类回归等问题。_xgboost的数学原理
https://blog.csdn.net/qq_70699891/article/details/1342570833.TPE算法(贝叶斯优化)
5.Wide & Deep、DeepFM
算法八股整理【Transformer】_transformer八股-CSDN博客文章浏览阅读2k次,点赞21次,收藏39次。A: 帮助模型在处理序列数据的时候,能够关注到输入序列中最重要的部分,,从而实现对信息的有效筛选和整合。注意力机制希望打破长序列信息瓶颈,解决长序列信息丢失的问题。朴素的Seq2Seq模型中,由于用Encoder RNN的最后一个神经元的隐状态作为 Decoder RNN 的隐状态,导致Encoder 的最后一个神经元的隐状态Context Vector 承载源句子的所有信息,成为整个模型的“信息”瓶颈。_transformer八股https://blog.csdn.net/ZLInbao/article/details/141165149?ops_request_misc=&request_id=&biz_id=102&utm_term=%E6%8E%A8%E8%8D%90%E7%AE%97%E6%B3%95%E5%85%AB%E8%82%A1&utm_medium=distribute.pc_search_result.none-task-blog-2~all~sobaiduweb~default-3-141165149.142^v102^pc_search_result_base8&spm=1018.2226.3001.418711.推荐系统 - DeepFM架构详解_deep fm-CSDN博客文章浏览阅读4w次,点赞43次,收藏231次。说明理论部分请参照:https://www.jianshu.com/p/6f1c2643d31b,这里主要针对源码进行解读,填一些坑。简单介绍1.DeepFM可以看做是从FM基础上衍生的算法,将Deep与FM相结合,用FM做特征间低阶组合,用Deep NN部分做特征间高阶组合,通过并行的方式组合两种方法,使得最终的架构具有以下特点。 (1) 不需要预训练 FM 得到隐向量;..._deep fm
https://blog.csdn.net/maqunfi/article/details/99635620?ops_request_misc=%257B%2522request%255Fid%2522%253A%2522aad82a5a76f6e43b5598562b10349861%2522%252C%2522scm%2522%253A%252220140713.130102334..%2522%257D&request_id=aad82a5a76f6e43b5598562b10349861&biz_id=0&utm_medium=distribute.pc_search_result.none-task-blog-2~all~top_positive~default-1-99635620-null-null.142^v102^pc_search_result_base8&utm_term=deepfm&spm=1018.2226.3001.4187
14.别人做好的itemcf