数模:用python画非赋权图、赋权图、有向图

该代码示例展示了如何使用Python的NetworkX库创建并绘制无向图、带有权重的无向图以及有向图。首先,通过添加节点和边来构建图,然后使用spring_layout进行布局,最后用matplotlib展示图形,包括节点标签、边的权重信息以及有向边的箭头。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

非赋权图:

import networkx as nx
import matplotlib.pyplot as plt

# 创建一个无向图
G = nx.Graph()

# 添加节点
G.add_nodes_from([1, 2, 3, 4, 5, 6])

# 添加边
edges = [(1, 2), (1, 3), (1, 4), (2, 3), (2, 6), (3, 4), (4, 5), (5, 6)]
G.add_edges_from(edges)

# 使用默认布局算法绘制图
pos = nx.spring_layout(G)

# 绘制图,其中 with_labels=True 表示显示节点标签,font_weight='bold' 表示节点标签加粗显示
nx.draw(G, pos, with_labels=True, font_weight='bold')

# 显示图
plt.show()

 赋权图:

import networkx as nx
import matplotlib.pyplot as plt

# 创建一个无向图
G = nx.Graph()

# 添加节点
G.add_nodes_from([1, 2, 3, 4, 5, 6])

# 添加带有权重的边
edges_with_weights = [(1, 2, 3), (1, 3, 5), (1, 4, 2), (2, 3, 1), (2, 6, 4), (3, 4, 7), (4, 5, 6), (5, 6, 3)]
G.add_weighted_edges_from(edges_with_weights)

# 使用默认布局算法绘制图
pos = nx.spring_layout(G)

# 获取边的权重信息
edge_labels = nx.get_edge_attributes(G, 'weight')

# 绘制图,其中 with_labels=True 表示显示节点标签,font_weight='bold' 表示节点标签加粗显示
nx.draw(G, pos, with_labels=True, font_weight='bold')

# 绘制边的权重信息
nx.draw_networkx_edge_labels(G, pos, edge_labels=edge_labels)

# 显示图
plt.show()

有向图 :

import networkx as nx
import matplotlib.pyplot as plt

# 创建一个有向图
G = nx.DiGraph()

# 添加节点
G.add_nodes_from([1, 2, 3, 4, 5, 6])

# 添加有向边
edges = [(1, 2), (1, 3), (2, 3), (2, 6), (3, 4), (4, 5), (5, 6)]
G.add_edges_from(edges)

# 使用默认布局算法绘制图
pos = nx.spring_layout(G)

# 绘制图,其中 with_labels=True 表示显示节点标签,font_weight='bold' 表示节点标签加粗显示
nx.draw(G, pos, with_labels=True, font_weight='bold', arrows=True)

# 显示图
plt.show()

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值