目录
Number One
题目描述
- 0724 寻找数组的中心下标 分类:数组 标签:数学,前缀和
- 给你一个整数数组 nums ,请计算数组的 中心下标 。
数组 中心下标 是数组的一个下标,其左侧所有元素相加的和等于右侧所有元素相加的和。
如果中心下标位于数组最左端,那么左侧数之和视为 0 ,因为在下标的左侧不存在元素。这一点对于中心下标位于数组最右端同样适用。
如果数组有多个中心下标,应该返回 最靠近左边 的那一个。如果数组不存在中心下标,返回 -1 。
最初解题思路
将数组翻转后赋值给新数组,之后求两个数组的前缀和,最后通过双指针寻找中心坐标。空间复杂度:
O
(
n
)
O(n)
O(n),时间复杂度:
O
(
n
)
O(n)
O(n) 。
在写代码时突然明白,最后不用双指针,因为中心下标左右元素包含全部,因此两个数组的前缀和数组下标存在如下关系:start + end = n-1,且满足两个前缀和数组元素相等。
class Solution {
public:
int pivotIndex(vector<int>& nums) {
int n = nums.size();
vector<int> flip_nums(nums.rbegin(), nums.rend());
vector<int> prefix_nums(n),prefix_filp(n);
prefix_nums[0] = nums[0];
prefix_filp[0] = flip_nums[0];
for(int i = 1; i < n; ++i){
prefix_nums[i] = prefix_nums[i-1] + nums[i];
prefix_filp[i] = prefix_filp[i-1] + flip_nums[i];
}
int start = 0, ans = -1;
while(start < n){
if(prefix_filp[n-start-1] == prefix_nums[start]){
ans = start;
break;
}
start++;
}
return ans;
}
};
class Solution:
def pivotIndex(self, nums: List[int]) -> int:
n: int = len(nums)
filp_nums: List[int] = list(reversed(nums))
prefix_nums: List[int] = [0] * n
prefix_flip: List[int] = [0] * n
prefix_nums[0] = nums[0]
prefix_flip[0] = filp_nums[0]
for i in range(1,n):
prefix_nums[i] = prefix_nums[i-1] + nums[i]
prefix_flip[i] = prefix_flip[i-1] + filp_nums[i]
start: int = 0
ans: int = -1
while start < n:
if prefix_nums[start] == prefix_flip[n-start-1]:
ans = start
break
start += 1
return ans
提交测试
- 情况
最终案例全部通过,不过在编写代码时遇到vector容器数组翻转初始化这一情况,最终也是查资料解决。 用时与消耗内存不大占优。 - 分析
算法学习
记数组的全部元素之和为
t
o
t
a
l
total
total,当遍历到第
i
i
i 个元素时,设其左侧元素之和为
s
u
m
sum
sum,则其右侧元素之和为
t
o
t
a
l
−
n
u
m
s
i
−
s
u
m
total−nums_{i} - sum
total−numsi−sum 左右侧元素相等即为
s
u
m
=
t
o
t
a
l
−
n
u
m
s
i
−
s
u
m
sum=total−nums_{i}−sum
sum=total−numsi−sum,即
2
×
s
u
m
+
n
u
m
s
i
=
t
o
t
a
l
2×sum+nums_{i} = total
2×sum+numsi=total
当中心索引左侧或右侧没有元素时,即为零个项相加,这在数学上称作「空和」(empty sum)。在程序设计中我们约定「空和是零」。(力扣官方题解)
感悟:自己的解题思路还是偏直,没有想到左侧前缀和与右侧前缀和相加等于总数,以至于又将数组翻转再求一次前缀和。
空间复杂度:
O
(
1
)
O(1)
O(1),时间复杂度:
O
(
n
)
O(n)
O(n) 。
最终代码
- C++
class Solution {
public:
int pivotIndex(vector<int>& nums) {
int total = accumulate(nums.begin(),nums.end(),0);
int sum = 0;
for(int i = 0; i < nums.size(); ++i){
if(2*sum + nums[i] == total){
return i;
}
sum += nums[i];
}
return -1;
}
};
这里学习到一个C++求vector求和的方法accumulate
。
accumulate(nums.begin(), nums.end(), 0);
accumulate带有三个形参:头两个形参指定要累加的元素范围,第三个形参则是累加的初值。
Python中求列表的和用sum()
2. Python
class Solution:
def pivotIndex(self, nums: List[int]) -> int:
total: int = sum(nums)
sums: int = 0
for i in range(len(nums)):
if(2*sums + nums[i] == total):
return i
sums = sums + nums[i]
return -1
Number Two
题目描述
- 0485 最大连续1的个数 分类:数组
- 给定一个二进制数组 nums , 计算其中最大连续 1 的个数。
最初解题思路
暴力枚举,进行循环遍历,找到更大的连1就替换原来的结果。
空间复杂度:
O
(
1
)
O(1)
O(1),时间复杂度:
O
(
n
)
O(n)
O(n)
class Solution {
public:
int findMaxConsecutiveOnes(vector<int>& nums) {
int ans = 0, tmp = 0;
int n = nums.size();
for(int i = 0; i < n; ++i){
if(nums[i] == 1){
tmp++;
}
else{
tmp = 0;
}
if(tmp > ans){
ans =tmp;
}
}
return ans;
}
};
提交测试
-
情况
-
分析
没错就是这么简单,这道题没有什么算法知识可学习的。
Number Three
题目描述
- 0238 除自身以外数组的乘积 分类:数组 标签:前缀和
- 给你一个整数数组 nums,返回 数组 answer ,其中 answer[i] 等于 nums 中除 nums[i] 之外其余各元素的乘积 。
题目数据 保证 数组 nums之中任意元素的全部前缀元素和后缀的乘积都在 32 位 整数范围内。
请不要使用除法,且在 O(n) 时间复杂度内完成此题。
最初解题思路
题目明确给出不要使用除法,以及在
O
(
n
)
O(n)
O(n)完成此题,因此我也是毫无思路,一下子把我的武器库清空了,直接学习题解的算法,尝试能否自己复刻算法思路。
将数组翻转,求左侧和右侧的前缀积,之后根据索引求出左侧与右侧的乘积得到答案。(与Number One那道题寻找数组中心下标,求左右和有异曲同工之妙)
class Solution {
public:
vector<int> productExceptSelf(vector<int>& nums) {
int n = nums.size();
vector<int> L(n), R(n);
vector<int> filp(nums.rbegin(),nums.rend());
L[0] = 1; R[0] = 1;
for(int i = 1; i < n; ++i){
L[i] = L[i-1] * nums[i-1];
R[i] = R[i-1] * filp[i-1];
}
vector<int> ans(n);
for(int i = 0; i < n; ++i){
ans[i] = L[i] * R[n-1-i];
}
return ans;
}
};
提交测试
- 情况
- 分析
前缀和思想,不过采用的是前缀积。
算法学习
空间复杂度 O(1) 的方法
尽管上面的方法已经能够很好的解决这个问题,但是空间复杂度并不为常数。
由于输出数组不算在空间复杂度内,那么我们可以将 L 或 R 数组用输出数组来计算。先把输出数组当作 L 数组来计算,然后再动态构造 R 数组得到结果。让我们来看看基于这个思想的算法。(力扣官方题解)
代码实现
class Solution {
public:
vector<int> productExceptSelf(vector<int>& nums) {
int n = nums.size();
vector<int> ans(n);
ans[0] = 1;
for(int i = 1; i < n; ++i){
ans[i] = ans[i-1] * nums[i-1];
}
int tmp = nums[n-1],mid;
nums[n-1] = 1;
for(int i = n-2; i >= 0; --i){
mid = nums[i+1] * tmp;
tmp = nums[i];
nums[i] = mid;
}
for(int i = 0; i < n; ++i){
ans[i] = ans[i] * nums[i];
}
return ans;
}
};
//官方题解
class Solution {
public:
vector<int> productExceptSelf(vector<int>& nums) {
int length = nums.size();
vector<int> answer(length);
// answer[i] 表示索引 i 左侧所有元素的乘积
// 因为索引为 '0' 的元素左侧没有元素, 所以 answer[0] = 1
answer[0] = 1;
for (int i = 1; i < length; i++) {
answer[i] = nums[i - 1] * answer[i - 1];
}
// R 为右侧所有元素的乘积
// 刚开始右边没有元素,所以 R = 1
int R = 1;
for (int i = length - 1; i >= 0; i--) {
// 对于索引 i,左边的乘积为 answer[i],右边的乘积为 R
answer[i] = answer[i] * R;
// R 需要包含右边所有的乘积,所以计算下一个结果时需要将当前值乘到 R 上
R *= nums[i];
}
return answer;
}
};
在算法优化过程中,如果想要减少空间复杂度,可以优先考虑使用结果数组存储中间状态,或者直接利用原来数组,迭代生成新数组覆盖原来数组。