《人工智能与脑认知》实验报告--视觉词性判断任务所激发的EEGLAB脑电数据分析

前言声明

  1. 实验原始数据和实验中用到的刺激词语是本人和学校的私有成果,可以提相关问题但不会公开数据;
  2. 这份报告是本人的课程作业,本人对“数据处理”部分的流程和结果、以及“实验结果”的分析方向的合理性相对自信,另外的分析方向还可涉及:利用机器学习技术分类、识别;差异波/多人数据比较等,但具体的分析结果。。。。。
  3. eeglab工具的安装教程可见EEGLAB在MATLAB中的下载、安装教程_matlab eeglab-CSDN博客

摘要

本实验采用EEGLAB对视觉词性判断任务诱发的脑电数据进行分析,研究名词、动词、事件名词与动名兼类事件名词在语义加工中的神经差异。实验共录制一名健康成年男性在该任务中的EEG数据,经过滤波、重参考、ICA等预处理后,提取相关ERP成分及时频特征(ERSP、ITC)。结果显示,不同ERP成分的显著区域不同、且不同词类在关键通道(Cz、F3、TP7)上的脑电特征存在显著差异。研究验证和揭示了词性判断过程中的多通道协同机制,以及对于视觉刺激任务的应有反馈,为词汇加工的时空动态提供了神经电生理证据。

实验和数据说明

实验设计和采集信息

本实验中的任务为词性判断任务[1],屏幕上展示不同词性的汉语二字词语,被试者需要通过按键判断看到词语的词性。实验刺激为120个词组成的词表,其中分为4个类别,每个类别30个不同的词语。实验过程中,打乱词表的顺序,每个词语都随机出现两次。整个实验过程中共有240个试次,分4个section进行。在试次开始前,先显示“+”号作为视线固定点,持续800ms;接下来在“+”号同位置显示词语,持续500ms;然后屏幕清空,黑屏时间持续1500ms。此后,将呈现下一个试次的“+”号固定点。

实验采用Neuroscan SynAmps2放大器,用62通道的脑电帽,采用10-20 O系统作为电极布局,参考电极为 REF,位于Cz和FCz之间。采样率1000 Hz、带通滤波5-30 Hz。使用 E-Prime3 呈现刺激,Curry8 收集数据。

本文使用的数据被试者为一名20岁的健康男性。

数据内容和结构

原始数据格式为.cnt,可以导入EEGLAB分析,共有7种事件标记[1]。其中:

  • 10.20,30这三种标记为按键测试阶段,模拟刺激物呈现时打下的标记。其时间戳对应模拟刺激物呈现的时刻;
  • 1.2,3,4这四种标记为正式试验阶段,刺激物呈现时打下的标记,标签时间戳为该样本呈现的时刻,标签内容值表明了该刺激物的类别,1表示名词,2表示动词,3表示事件名词,4表示动名兼类事件名词。

数据处理过程

去除无用电极

无用电极指的是在整个脑电信号处理的过程(包括画地形图)中都没有用的电极,根据电极地图,本实验共使用了62个电极,如图2所示。

滤波

为了删除线性趋势,对数据进行高通筛选,还有学者建议以1 Hz的频率对数据进行高通滤波以获得高质量的ICA分解[2][3]。此外,通过低通滤波高频噪声,根据采集信息,使用Basic FIR filter进行5-30 Hz滤波,结果如图3。

重参考

重参考的核心作用是重新定义EEG信号的电压基准点(即参考电极),以消除原始参考电极可能引入的偏差或噪声,从而更准确地反映大脑活动。

平均重参考是一种常见的重参考方法,其将信号的参考点转换为所有电极的电位平均值。假设脑电活动在所有电极上的平均值为零(或接近零),平均参考可近似“无偏”的参考点,尤其适用于高密度电极系统。

分段和基线矫正

在以上的处理步骤后,对数据进行按event分段的操作,以便后续对各个event分别进行更精细的处理操作,也便于后续的数据分析。根据实验范式,每个event的epoch限制在[-0.8, 2]秒的区间。

当数据epoch之间存在基线差异,如由低频漂移或伪影引起的差异时,需要从每个epoch中删除平均基线值[3]。这些是没有意义可解释的,但如果留在数据中,可能会扭曲数据分析。图4以event 1为例展示了分段的结果。

ICA和剔除其他噪声成分及异常通道

对于盲源分离问题,ICA是指在只知道混合信号,而不知道源信号、噪声以及混合机制的情况下,分离或近似地分离出源信号的一种分析过程,主要目的是用于去除前序步骤中未处理干净的脑电中的噪声[3]。

在使用Extended Infomax方式进行ICA后,根据各个独立成分和通道数据频谱图的结果,进行伪迹、无名噪声、坏导去除的操作。图5以event 1为例,展示了ICA以及筛选成分的过程。

如图5(b) 所示,顶部的两个通道是异常值,单击通道轨迹会显示这些通道[3],发现是43和33,根据图2“电极定位”对应M1和M2,去除这两个电极,其他无走势明显异常的噪声。完整处理结果如图5(e) 所示。

随后对标签为2.3.4的event的数据做相同的处理,并保存最终数据。

数据分析结果

主要选择对电极:Cz [4, 5](顶叶区,涉及句法整合、语义加工)、F3 [6](左前额区,涉及词法、语法判断)、TP7 [4](左颞区,涉及语义理解、深层语义整合)。以及相关ERP成分:P200 [6]、N400 [4]、P600 [5]进行分析。

激发时间、区域比较

使用EEGLAB的Plot-channel ERPs和ERP map series功能绘制下图:

如图6(a)(b)(c)(d)所示,图中分别标注出了P200、N400和P600成分以及ERP能量方差最大的位置。可以看到,ERP波动幅度最大的部分特别是在200ms前后。这说明这个时段内:各通道之间的电位响应差异最大;即存在最显著的、空间上区分明显的脑区反应。

ERP的方差最大通常意味着该时间窗口是最关键的神经认知加工时期。这反映出对于词性的分类通常是在刺激后200ms左右,即受到刺激早期。由图6(e)所示,在早期通常是左侧脑区较为活跃,这也符合“人脑的语言功能普遍具有左侧优势、左颞负责初步语义处理”的实验预设。同时,由图6(e)和7也可看出对于“视觉刺激”的任务,确实是右侧额叶区N170成分更加显著[7]。

对于N400来说,对语义不一致、语境不合的词汇会激发显著的反应。但由于该实验的刺激是一个个单词而非一句句子的情形,故左后部脑区,尤其是左颞-顶叶交界区域,未出现显著的N400成分。

在图6(c)中,对于事件名词事件,中线后部出现了强烈了P600成分,反映出受试者在事件名词刺激下,如“跳舞”“战争”,大脑可能在加工时瞬间启动了动词或事件结构的通路,随后又需重解释为名词,产生类别冲突,这种类型冲突会激发P600,类似句法范畴冲突引发的反应[8]。或者大脑在看到这些词时可能自动激活一个事件框架,如“跳舞=有人+跳+音乐”,这一激活过程需要整合不同语义单元,也可能诱发P600。而对于动名兼类的事件名词,我认为或许是由于这类词更具兼容性,认知预设更为活跃,即大脑已经习惯其双重语法角色,或语义整合成本更低。

探索性时频比较、ERP波形差异比较 

由图7,对于该语义(词性)判断任务,从整体脑区上来看,额叶、颞叶、枕叶区域相对活跃,这也符合本实验预设重点分析的三个电极的位置。

对语义任务来说,θ频段(4-7Hz)增强意味着注意集中、语义整合、记忆调用[9],发生在顶叶和颞叶;α频段(8-13Hz)减弱意味着认知负荷增加、加工活跃、注意分配[10],在枕叶最明显;β波段(14-30Hz)增强则意味着动作语义、预测、认知控制[11]。

使用EEGLAB的Plot-channel time-frequency功能,本文对上述3个主要电极进行时频分析,选取每个epoch [-50ms, 800ms] 的数据,如图8所示。每个左子图两个面板:ERSP 图,表示在某一频率范围内功率的变化(红色增强,蓝色抑制),单位 dB;ITC 图,表示在某一时间点各试次信号相位的一致性,数值越大越一致。右子图为该通道该事件放大的ERP波形图。

 Cz电极主要反映的是语义整合初期,该时段负责感觉整合和语义加工。动词类词ERP振幅略低,可能因其激活方式更依赖前额叶处理(图8f)。而名词与事件名词呈现出更显著的β频段增强,说明更多认知资源被语义整合过程消耗;动名兼类词在低频段功率增强,反映双语义加载。Cz通道揭示了词义整合的语义加工负荷,动名兼类最显著,符合其语义双重激活理论[12]。

F3电极(图8e-h)主要反映的是语法处理与语言控制的过程。动词与动名兼类诱发更高的负波(约350–500ms),显示额叶区域对动作语义/句法角色处理的参与[13]。同时事件名词在 θ 和 α 显著增强,说明语法框架或内隐句法判定过程较活跃。可以得出“F3主要反映句法与动词处理的额叶参与,动词类负荷更大”的结论。

TP7电极(图8i-l)主要反映深层语义整合。所有类别的负波都在300–600ms显现,但以(动名兼类)事件名词波动最强,说明语义激活需求更高。名词、事件名词、动名兼类均在10–20Hz范围出现功率增强或长时段保持红色(同步),说明语义加工持续。且在事件名词和动名兼类事件名词条件下表现出较高、长时间较持续的 ITC,暗示该类词激活过程具有高时间一致性。反映了TP7通道在语义加工上较为敏感,支持其为经典词义整合脑区,刺激事件的双义性导致更强激活。

总体来说,实验数据结果基本符合“不同通道分工明确”以及对各类词性判别过程已有的结论认知。

讨论

尽管整体数据结果与预设理论高度一致,但本文属于单被试的“case study”,未来可以考虑引入更多被试、多语境刺激或对比句子任务,以进一步拓展词类语义加工的认知神经基础研究,也可以分析更多的通道数据。

总结

本实验围绕视觉词性判断任务展开,系统学习并实践了EEGLAB的使用流程,掌握了从数据导入、滤波、重参考、分段、ICA去噪到时频分析等关键数据处理技术。通过对名词、动词、事件名词和动名兼类事件名词四类刺激在Cz、F3和TP7三个关键通道上的脑电反应以及对典型ERP成分激发时间窗与分布区域分析,发现P200主要集中于左侧颞叶区;N400在单个词语的环境下并不显著;P600则在事件名词类刺激中显著,可能与类别冲突或事件结构加工有关。进一步的时频分析显示,名词和事件名词刺激初期在β频段存在显著增强,动词和事件名词刺激中期在θ频段增强,反映语义加工资源的差异调用;同时,ITC分析揭示动名兼类词引发更强的相位一致性,说明其神经反应更加时间集中。ERP波形图进一步支持了不同通道对词性判断的认知模式:Cz反映整合初期的语义负荷,F3体现动词相关的语法处理,TP7则在深层语义整合中最为活跃。

除“词性判断”外,本文还通过ERP方差最大的位置验证了对于“视觉刺激”任务,确实是右侧额叶区的N170成分更加显著。

参考文献

  1. 课程学习通资料区. "数据说明标签"文档.
  2. Klug, Marius, and Gramann. "Identifying key factors for improving ICA‐based decomposition of EEG data in mobile and stationary experiments." European Journal of Neuroscience 54.12 (2021): 8406-8420.
  3. "EEGLAB Tutorials." EEGLAB, SCCN/UCSD, Tutorials - EEGLAB Wiki.
  4. Wikipedia contributors. (2024). N400_(neuroscience). Wikipedia. https://en.wikipedia.org/wiki/N400_(neuroscience)
  5. Wikipedia contributors. (2024). Prediction in language comprehension. Wikipedia. https://en.wikipedia.org/wiki/Prediction_in_language_comprehension
  6. Moreno, E.M., Casado, P. & Martín-Loeches, M. Tell me sweet little lies: An event-related potentials study on the processing of social lies. Cogn Affect Behav Neurosci 16, 616–625 (2016).
  7. 课程学习通资料区. "lecture 6常见的ERP成分"文档.
  8. Kim, Albert, and Laura Sikos. "A deeper reanalysis of a superficial feature: An ERP study on the interaction of syntax and semantics." Brain Research 1281 (2009): 92–101.
  9. Bastiaansen, M. C. M., and Peter Hagoort. "Oscillatory neuronal dynamics during language comprehension." Progress in Brain Research, vol. 159, 2006, pp. 179–196. Elsevier.
  10. Klimesch, Wolfgang. "Alpha-band oscillations, attention, and controlled access to stored information." Trends in Cognitive Sciences, vol. 16, no. 12, 2012, pp. 606–617. Elsevier.
  11. Weiss, Sabine, and Hermann M. Mueller. "‘Too many betas do not spoil the broth’: The role of beta brain oscillations in language processing." Frontiers in Psychology, vol. 3, 2012, article 201. Frontiers.
  12. Rodd, Jennifer M., Gareth Gaskell, and William Marslen-Wilson. "Making sense of semantic ambiguity: Semantic competition in lexical access." Journal of Memory and Language, vol. 46, no. 2, 2002, pp. 245–266.
  13. Hagoort, P. "On Broca, brain, and binding: a new framework." Trends in Cognitive Sciences, vol. 9, no. 9, 2005, pp. 416–423.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值