前言声明
- 实验原始数据和实验中用到的刺激词语是本人和学校的私有成果,可以提相关问题但不会公开数据;
- 这份报告是本人的课程作业,本人对“数据处理”部分的流程和结果、以及“实验结果”的分析方向的合理性相对自信,另外的分析方向还可涉及:利用机器学习技术分类、识别;差异波/多人数据比较等,但具体的分析结果。。。。。
- eeglab工具的安装教程可见EEGLAB在MATLAB中的下载、安装教程_matlab eeglab-CSDN博客
摘要
本实验采用EEGLAB对视觉词性判断任务诱发的脑电数据进行分析,研究名词、动词、事件名词与动名兼类事件名词在语义加工中的神经差异。实验共录制一名健康成年男性在该任务中的EEG数据,经过滤波、重参考、ICA等预处理后,提取相关ERP成分及时频特征(ERSP、ITC)。结果显示,不同ERP成分的显著区域不同、且不同词类在关键通道(Cz、F3、TP7)上的脑电特征存在显著差异。研究验证和揭示了词性判断过程中的多通道协同机制,以及对于视觉刺激任务的应有反馈,为词汇加工的时空动态提供了神经电生理证据。
实验和数据说明
实验设计和采集信息
本实验中的任务为词性判断任务[1],屏幕上展示不同词性的汉语二字词语,被试者需要通过按键判断看到词语的词性。实验刺激为120个词组成的词表,其中分为4个类别,每个类别30个不同的词语。实验过程中,打乱词表的顺序,每个词语都随机出现两次。整个实验过程中共有240个试次,分4个section进行。在试次开始前,先显示“+”号作为视线固定点,持续800ms;接下来在“+”号同位置显示词语,持续500ms;然后屏幕清空,黑屏时间持续1500ms。此后,将呈现下一个试次的“+”号固定点。
实验采用Neuroscan SynAmps2放大器,用62通道的脑电帽,采用10-20 O系统作为电极布局,参考电极为 REF,位于Cz和FCz之间。采样率1000 Hz、带通滤波5-30 Hz。使用 E-Prime3 呈现刺激,Curry8 收集数据。
本文使用的数据被试者为一名20岁的健康男性。
数据内容和结构
原始数据格式为.cnt,可以导入EEGLAB分析,共有7种事件标记[1]。其中:
- 10.20,30这三种标记为按键测试阶段,模拟刺激物呈现时打下的标记。其时间戳对应模拟刺激物呈现的时刻;
- 1.2,3,4这四种标记为正式试验阶段,刺激物呈现时打下的标记,标签时间戳为该样本呈现的时刻,标签内容值表明了该刺激物的类别,1表示名词,2表示动词,3表示事件名词,4表示动名兼类事件名词。
数据处理过程
去除无用电极
无用电极指的是在整个脑电信号处理的过程(包括画地形图)中都没有用的电极,根据电极地图,本实验共使用了62个电极,如图2所示。
滤波
为了删除线性趋势,对数据进行高通筛选,还有学者建议以1 Hz的频率对数据进行高通滤波以获得高质量的ICA分解[2][3]。此外,通过低通滤波高频噪声,根据采集信息,使用Basic FIR filter进行5-30 Hz滤波,结果如图3。
重参考
重参考的核心作用是重新定义EEG信号的电压基准点(即参考电极),以消除原始参考电极可能引入的偏差或噪声,从而更准确地反映大脑活动。
平均重参考是一种常见的重参考方法,其将信号的参考点转换为所有电极的电位平均值。假设脑电活动在所有电极上的平均值为零(或接近零),平均参考可近似“无偏”的参考点,尤其适用于高密度电极系统。
分段和基线矫正
在以上的处理步骤后,对数据进行按event分段的操作,以便后续对各个event分别进行更精细的处理操作,也便于后续的数据分析。根据实验范式,每个event的epoch限制在[-0.8, 2]秒的区间。
当数据epoch之间存在基线差异,如由低频漂移或伪影引起的差异时,需要从每个epoch中删除平均基线值[3]。这些是没有意义可解释的,但如果留在数据中,可能会扭曲数据分析。图4以event 1为例展示了分段的结果。
ICA和剔除其他噪声成分及异常通道
对于盲源分离问题,ICA是指在只知道混合信号,而不知道源信号、噪声以及混合机制的情况下,分离或近似地分离出源信号的一种分析过程,主要目的是用于去除前序步骤中未处理干净的脑电中的噪声[3]。
在使用Extended Infomax方式进行ICA后,根据各个独立成分和通道数据频谱图的结果,进行伪迹、无名噪声、坏导去除的操作。图5以event 1为例,展示了ICA以及筛选成分的过程。
如图5(b) 所示,顶部的两个通道是异常值,单击通道轨迹会显示这些通道[3],发现是43和33,根据图2“电极定位”对应M1和M2,去除这两个电极,其他无走势明显异常的噪声。完整处理结果如图5(e) 所示。
随后对标签为2.3.4的event的数据做相同的处理,并保存最终数据。
数据分析结果
主要选择对电极:Cz [4, 5](顶叶区,涉及句法整合、语义加工)、F3 [6](左前额区,涉及词法、语法判断)、TP7 [4](左颞区,涉及语义理解、深层语义整合)。以及相关ERP成分:P200 [6]、N400 [4]、P600 [5]进行分析。
激发时间、区域比较
使用EEGLAB的Plot-channel ERPs和ERP map series功能绘制下图:
如图6(a)(b)(c)(d)所示,图中分别标注出了P200、N400和P600成分以及ERP能量方差最大的位置。可以看到,ERP波动幅度最大的部分特别是在200ms前后。这说明这个时段内:各通道之间的电位响应差异最大;即存在最显著的、空间上区分明显的脑区反应。
ERP的方差最大通常意味着该时间窗口是最关键的神经认知加工时期。这反映出对于词性的分类通常是在刺激后200ms左右,即受到刺激早期。由图6(e)所示,在早期通常是左侧脑区较为活跃,这也符合“人脑的语言功能普遍具有左侧优势、左颞负责初步语义处理”的实验预设。同时,由图6(e)和7也可看出对于“视觉刺激”的任务,确实是右侧额叶区N170成分更加显著[7]。
对于N400来说,对语义不一致、语境不合的词汇会激发显著的反应。但由于该实验的刺激是一个个单词而非一句句子的情形,故左后部脑区,尤其是左颞-顶叶交界区域,未出现显著的N400成分。
在图6(c)中,对于事件名词事件,中线后部出现了强烈了P600成分,反映出受试者在事件名词刺激下,如“跳舞”“战争”,大脑可能在加工时瞬间启动了动词或事件结构的通路,随后又需重解释为名词,产生类别冲突,这种类型冲突会激发P600,类似句法范畴冲突引发的反应[8]。或者大脑在看到这些词时可能自动激活一个事件框架,如“跳舞=有人+跳+音乐”,这一激活过程需要整合不同语义单元,也可能诱发P600。而对于动名兼类的事件名词,我认为或许是由于这类词更具兼容性,认知预设更为活跃,即大脑已经习惯其双重语法角色,或语义整合成本更低。
探索性时频比较、ERP波形差异比较
由图7,对于该语义(词性)判断任务,从整体脑区上来看,额叶、颞叶、枕叶区域相对活跃,这也符合本实验预设重点分析的三个电极的位置。
对语义任务来说,θ频段(4-7Hz)增强意味着注意集中、语义整合、记忆调用[9],发生在顶叶和颞叶;α频段(8-13Hz)减弱意味着认知负荷增加、加工活跃、注意分配[10],在枕叶最明显;β波段(14-30Hz)增强则意味着动作语义、预测、认知控制[11]。
使用EEGLAB的Plot-channel time-frequency功能,本文对上述3个主要电极进行时频分析,选取每个epoch [-50ms, 800ms] 的数据,如图8所示。每个左子图两个面板:ERSP 图,表示在某一频率范围内功率的变化(红色增强,蓝色抑制),单位 dB;ITC 图,表示在某一时间点各试次信号相位的一致性,数值越大越一致。右子图为该通道该事件放大的ERP波形图。
Cz电极主要反映的是语义整合初期,该时段负责感觉整合和语义加工。动词类词ERP振幅略低,可能因其激活方式更依赖前额叶处理(图8f)。而名词与事件名词呈现出更显著的β频段增强,说明更多认知资源被语义整合过程消耗;动名兼类词在低频段功率增强,反映双语义加载。Cz通道揭示了词义整合的语义加工负荷,动名兼类最显著,符合其语义双重激活理论[12]。
F3电极(图8e-h)主要反映的是语法处理与语言控制的过程。动词与动名兼类诱发更高的负波(约350–500ms),显示额叶区域对动作语义/句法角色处理的参与[13]。同时事件名词在 θ 和 α 显著增强,说明语法框架或内隐句法判定过程较活跃。可以得出“F3主要反映句法与动词处理的额叶参与,动词类负荷更大”的结论。
TP7电极(图8i-l)主要反映深层语义整合。所有类别的负波都在300–600ms显现,但以(动名兼类)事件名词波动最强,说明语义激活需求更高。名词、事件名词、动名兼类均在10–20Hz范围出现功率增强或长时段保持红色(同步),说明语义加工持续。且在事件名词和动名兼类事件名词条件下表现出较高、长时间较持续的 ITC,暗示该类词激活过程具有高时间一致性。反映了TP7通道在语义加工上较为敏感,支持其为经典词义整合脑区,刺激事件的双义性导致更强激活。
总体来说,实验数据结果基本符合“不同通道分工明确”以及对各类词性判别过程已有的结论认知。
讨论
尽管整体数据结果与预设理论高度一致,但本文属于单被试的“case study”,未来可以考虑引入更多被试、多语境刺激或对比句子任务,以进一步拓展词类语义加工的认知神经基础研究,也可以分析更多的通道数据。
总结
本实验围绕视觉词性判断任务展开,系统学习并实践了EEGLAB的使用流程,掌握了从数据导入、滤波、重参考、分段、ICA去噪到时频分析等关键数据处理技术。通过对名词、动词、事件名词和动名兼类事件名词四类刺激在Cz、F3和TP7三个关键通道上的脑电反应以及对典型ERP成分激发时间窗与分布区域分析,发现P200主要集中于左侧颞叶区;N400在单个词语的环境下并不显著;P600则在事件名词类刺激中显著,可能与类别冲突或事件结构加工有关。进一步的时频分析显示,名词和事件名词刺激初期在β频段存在显著增强,动词和事件名词刺激中期在θ频段增强,反映语义加工资源的差异调用;同时,ITC分析揭示动名兼类词引发更强的相位一致性,说明其神经反应更加时间集中。ERP波形图进一步支持了不同通道对词性判断的认知模式:Cz反映整合初期的语义负荷,F3体现动词相关的语法处理,TP7则在深层语义整合中最为活跃。
除“词性判断”外,本文还通过ERP方差最大的位置验证了对于“视觉刺激”任务,确实是右侧额叶区的N170成分更加显著。
参考文献
- 课程学习通资料区. "数据说明标签"文档.
- Klug, Marius, and Gramann. "Identifying key factors for improving ICA‐based decomposition of EEG data in mobile and stationary experiments." European Journal of Neuroscience 54.12 (2021): 8406-8420.
- "EEGLAB Tutorials." EEGLAB, SCCN/UCSD, Tutorials - EEGLAB Wiki.
- Wikipedia contributors. (2024). N400_(neuroscience). Wikipedia. https://en.wikipedia.org/wiki/N400_(neuroscience)
- Wikipedia contributors. (2024). Prediction in language comprehension. Wikipedia. https://en.wikipedia.org/wiki/Prediction_in_language_comprehension
- Moreno, E.M., Casado, P. & Martín-Loeches, M. Tell me sweet little lies: An event-related potentials study on the processing of social lies. Cogn Affect Behav Neurosci 16, 616–625 (2016).
- 课程学习通资料区. "lecture 6常见的ERP成分"文档.
- Kim, Albert, and Laura Sikos. "A deeper reanalysis of a superficial feature: An ERP study on the interaction of syntax and semantics." Brain Research 1281 (2009): 92–101.
- Bastiaansen, M. C. M., and Peter Hagoort. "Oscillatory neuronal dynamics during language comprehension." Progress in Brain Research, vol. 159, 2006, pp. 179–196. Elsevier.
- Klimesch, Wolfgang. "Alpha-band oscillations, attention, and controlled access to stored information." Trends in Cognitive Sciences, vol. 16, no. 12, 2012, pp. 606–617. Elsevier.
- Weiss, Sabine, and Hermann M. Mueller. "‘Too many betas do not spoil the broth’: The role of beta brain oscillations in language processing." Frontiers in Psychology, vol. 3, 2012, article 201. Frontiers.
- Rodd, Jennifer M., Gareth Gaskell, and William Marslen-Wilson. "Making sense of semantic ambiguity: Semantic competition in lexical access." Journal of Memory and Language, vol. 46, no. 2, 2002, pp. 245–266.
- Hagoort, P. "On Broca, brain, and binding: a new framework." Trends in Cognitive Sciences, vol. 9, no. 9, 2005, pp. 416–423.