视线估计的相关研究

什么是POG?

POG是每只眼睛在视网膜最高敏锐度的区域(中央凹陷区域)注视的点在图像中的呈现

如何得到POG?

大多数远视视线估计都是从图片中提取眼睛特征分析,有时也会提取头部特征分析。常见一种方法通过跟踪面部特征来估计三维头部姿态,得出眼睛旋转中心的位置,然后结合估计的虹膜或瞳孔中心位置,计算POG;另一种方法是利用虹膜-巩膜边界的透视投影来估计眼睛在空间中的位置和方向,从而计算POG。

远视POG估计最常见的方法是使用瞳孔中心,以及一个或多个角膜反射进行估计。瞳孔中心和角膜反射已经在视线估计中用了40多年,但此前缺乏一般性理论,论文提出了POG估计的一般性理论。

6D位姿

6D是指6个自由度,代表了3个自由度的位移 (也叫平移 (Translation)),以及3个自由度的空间旋转 (Rotation),合起来就叫位姿 (Pose)。位姿是一个相对的概念,指的是两个坐标系之间的位移和旋转变换。物体6D位姿和相机6D位姿是相似的,区别在于从哪个坐标系变换到相机坐标系。

极线融合

参考文章:

利用瞳孔中心和角膜反射的视线估计理论 - 知乎 (zhihu.com)

### 眼睛注视估计技术概述 视线估计是一种通过分析人类的眼睛运动来推断其关注方向的技术。该领域可以分为两大类:侵入性和非侵入性技术[^1]。 #### 侵入性技术 侵入性技术通常涉及与用户的物理接触,例如使用隐形眼镜、电极或者头戴式设备。这类方法能够提供高精度的数据采集能力,但由于需要直接接触用户的身体部位,在实际应用中可能受到一定的限制。 #### 非侵入性技术 相比之下,非侵入性技术更加注重用户体验,主要依赖于外部传感器而非身体连接装置来进行数据获取。其中最常见的是基于视觉的方法——利用摄像头拍摄眼部区域并进一步处理得到所需信息。值得注意的是,尽管某些基于摄像机的解决方案也可能采用头部佩戴形式,但这并不意味着它们本质上属于侵入类别。 对于具体实现方面,《A Differential Approach for Gaze Estimation》一文中提出了差异化的视角估算模型,并已被PAMI期刊接受发表(2019年)[^2]。这种方法或许代表了当前研究前沿之一,值得深入探讨学习。 ```python import cv2 import numpy as np def preprocess_image(image_path): """预处理输入图片""" img = cv2.imread(image_path) gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) resized_img = cv2.resize(gray_img,(64,32)) normalized_img = resized_img / 255.0 return normalized_img.reshape((1,) + normalized_img.shape) # 假设我们已经有了训练好的神经网络模型model_gaze_estimation input_data = preprocess_image('eye_sample.jpg') output_angle = model_gaze_estimation.predict(input_data).flatten() print(f'Estimated gaze angle: {np.degrees(output_angle)} degrees.') ``` 上述代码片段展示了一个简单的图像预处理流程以及如何调用预先构建好的深度学习模型进行预测操作的例子。当然实际情况下的算法会更为复杂精细。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值