- 博客(10)
- 收藏
- 关注
原创 机器学习--主成分分析(PCA)
PCA(Principal Component Analysis,主成分分析)是一种常用的降维算法,它通过投影的方式将高维数据映射到低维的空间中,并且保证在所投影的维度上,原数据的信息量最大,从而使用较少的数据维度,保留住较多的原始数据特性。图1 数据点投影到低维超平面。
2024-06-16 20:44:21
887
原创 支持向量机
在本次实践中,我们通过编写自定义的线性支持向量机(Linear SVM)算法,深入理解了SVM的工作原理和实现过程。从初始化参数到模型训练,再到参数调优和结果可视化,我们见证了一个强大的分类器是如何从基础数学原理演化而来的。通过逐步构建LinearSVM类,我们不仅实现了SVM的核心功能,还学习了如何通过迭代优化算法来更新模型参数,以及如何通过正则化技术来防止模型过拟合。此外,我们还掌握了如何将模型的预测结果可视化,这对于理解模型决策过程和评估模型性能至关重要。
2024-06-09 21:28:09
1754
原创 机器学习--逻辑回归
逻辑回归是一种有效的分类技术,其核心包括线性回归、logistic函数(也称为sigmoid函数)和对数几率。线性回归为逻辑回归提供了基础框架,而sigmoid函数将线性回归的输出映射到(0,1)区间内,使其能够表示概率。对数几率则是衡量事件发生与不发生概率比值的对数值,是逻辑回归中的一个重要概念。代码实现部分展示了从数据准备到模型训练的完整过程,包括各种优化算法的应用,以确保模型能够准确预测分类结果。
2024-05-28 12:59:59
1887
1
原创 机器学习-贝叶斯分类
贝叶斯算法是一种基于概率论的分类方法,它通过计算先验概率和条件概率来预测样本的类别。贝叶斯算法的核心思想是利用已知的信息(如训练数据集)来估计未知参数的概率分布,从而对新的样本进行分类。贝叶斯算法在机器学习、数据挖掘和自然语言处理等领域有着广泛的应用。
2024-05-09 21:43:39
508
原创 机器学习-决策树
决策树(Decision Tree)是一种直观的决策分析方法,也是一种常用的分类方法。它利用树形图的形式,基于已知的各种情况发生概率,来求取净现值的期望值大于等于零的概率,进而评价项目的风险,并判断其可行性。
2024-04-27 22:15:09
767
原创 机器学习模型评估
在机器学习中,模型评估是评估机器学习模型性能的关键环节。通过评估,我们可以了解模型在不同任务上的表现,发现模型的缺陷,进而进行优化。通过本次实验,我深刻认识到模型评估在机器学习中的重要性。一个优秀的模型不仅要有高准确率,还要在精确率、召回率和F1分数等多个指标上有良好表现。此外,模型评估还能帮助我们发现模型的不足,指导我们进行模型优化。在模型选择方面,我认为没有绝对的"最佳"模型,只有最适合特定任务和数据集的模型。因此,在进行模型选择时,我们需要充分考虑任务需求、数据特点以及模型特性等多方面因素。
2024-04-13 17:24:13
727
1
原创 k-近邻算法
K-近邻(K-Nearest Neighbors,简称KNN)算法是一种基于实例的学习,或者说是局部逼近和将所有的计算推迟到分类之后的惰性学习。它是一种基本的机器学习算法,主要用于分类和回归问题。在分类问题中,KNN算法通过测量不同数据点之间的距离进行分类。KNN的工作原理是:在特征空间中,如果一个实例的大多数k个最近邻实例属于某个类别,则该实例也属于这个类别。具体来说,对于给定的测试实例,基于某种距离度量方式找出训练集中与其最靠近的k个训练实例,然后统计这k个实例中最多的类别作为预测结果。
2024-04-01 11:13:04
651
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人