带有 Hadoop 的 Spark 安装包(with Hadoop)
包含 Hadoop 库:这个版本的 Spark 安装包中包含了 Hadoop 的库文件,通常包括 Hadoop 的 Common、HDFS、YARN 等组件的 JAR 文件。
简化配置:使用这个版本时,用户不需要单独安装和配置 Hadoop 环境,因为 Spark 已经集成了所需的 Hadoop 组件。这使得安装和配置过程相对简单,适合快速开始使用 Spark。
适用场景:如果你的环境中没有预先安装 Hadoop,或者你希望在一个独立的环境中使用 Spark 而不依赖于外部的 Hadoop 安装,这个版本是一个不错的选择。
没有带有 Hadoop 的 Spark 安装包(without Hadoop)
不包含 Hadoop 库:这个版本的 Spark 安装包中不包含 Hadoop 的库文件,仅包含了 Spark 自己的核心组件。
需要额外配置:使用这个版本时,你需要在你的环境中单独安装 Hadoop,并确保 Spark 能够找到 Hadoop 的库文件。这通常需要设置环境变量(如 HADOOP_HOME
)和配置文件(如 spark-defaults.conf
),以便 Spark 可以正确地与 Hadoop 进行交互。
适用场景:如果你的环境中已经安装了 Hadoop,并且你希望使用现有的 Hadoop 集群资源,或者你想要更灵活地管理 Hadoop 和 Spark 的版本和配置,这个版本会更加适合。此外,如果你使用的是云服务提供商提供的 Spark 服务,通常也会使用不带 Hadoop 的 Spark 版本,因为云服务已经集成了 Hadoop 环境。
即使下载了带有 Hadoop 的 Spark 安装包,可以在环境变量中指定你原来 Hadoop 的地址,让 Spark 使用你已有的 Hadoop 环境。这样做的好处是可以利用现有的 Hadoop 配置和资源,同时避免了重复安装 Hadoop 组件可能带来的版本冲突等问题。
配置步骤如下:
-
设置
HADOOP_HOME
环境变量:-
将
HADOOP_HOME
设置为你已安装 Hadoop 的目录路径。例如,如果你的 Hadoop 安装在/usr/local/hadoop
,则设置HADOOP_HOME=/usr/local/hadoop
。 -
这样做可以确保 Spark 在运行时能够找到 Hadoop 的配置文件和库文件。
-