利用PoseNet实现安卓应用的眼部滤镜效果

在计算机视觉领域,PoseNet是一个非常实用的深度学习模型,通常用于人体姿态估计。不过,在本文中,我们将探讨如何使用PoseNet为安卓应用制作眼部滤镜。

PoseNet模型简介

PoseNet是一种用于估计人体物理位置的计算机视觉深度学习模型。它基于MobileNet构建,这使得它能够部署到移动设备上,并且对输入图像的响应时间更短。在之前的教程中,我们已经了解了如何使用PoseNet模型来检测人体各个关键点的位置,比如眼睛、耳朵和鼻子等。基于这些检测到的关键点,我们可以实现类似于Snapchat等流行应用中的特效。在本教程中,我们将继续这个项目,为图像添加眼部滤镜。

项目流程概述

本项目主要分为两部分:一是使用PoseNet进行关键点检测(这部分内容我们在之前的教程中已经介绍过),二是将其应用于创建眼部滤镜的用例。在之前的教程中,我们首先加载、裁剪和调整图像大小,使其与模型的输入大小(257x257)相匹配。然后将图像输入到PoseNet模型中,以预测关键点的位置。

需要注意的是,模型可能无法准确检测到身体部位,或者图像中可能根本不包含人体。因此,每个关键点都有一个关联的分数(范围在0.0到1.0之间),表示模型的置信度。例如,如果分数高于0.5,那么该关键点将被接受进行进一步处理。在之前的教程中,我们学习了如何在置信度分数高于0.5的检测到的关键点上绘制圆圈。

在本教程中,我们将在之前的基础上继续进行。在检测到所有关键点后,我们将重点关注眼睛的位置。在加载并准备好滤镜图像后,将其放置在目标关键点上。

准备眼部滤镜

眼部滤

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值