matplotlitb1
应用
- 可以用来绘制各种静态,动态,交互式的图表
- 可以绘制线图、散点图、等高线图、条形图、柱状图、3D 图形、甚至是图形动画等等
API介绍
设置图片大小
fig = plt.figure(figsize=(宽, 高),dpi= )
x,y轴刻度大小
import matplotlib.pyplot as plt
import matplotlib.ticker as ticker
from matplotlib.ticker import MultipleLocator
# 设置多个刻度范围
plt.figure(figsize=(10, 10))
ran = []
x = [1, 21, 23, 25, 60, 70]
y = [10, 20, 30, 40, 50, 60]
# 设置两个刻度范围
ran.extend(range(0, 30, 5))
ran.extend(range(30, 90, 10))
plt.xticks(ran, rotation=70,fontsize=10)
plt.yticks(range(0, 90, 10), fontsize=10)
plt.xlim(0, 80)
plt.ylim(0, 80)
plt.plot(x, y, color='green', marker='o', linestyle='dashed', linewidth=1, markersize=6)
plt.legend(["test"], loc="best")
plt.show()
设置横纵坐标的标签
plt.xlabel(), plt.ylabel()
#先在开头添加如下代码,防止中文乱码
import seaborn as sns
sns.set_style({'font.sans-serif':['simhei','Arial']})
matplotlib.pyplot.xlabel(xlabel, fontdict=None, labelpad=None, *, loc=None, **kwargs)
matplotlib.pyplot.ylabel(ylabel, fontdict=None, labelpad=None, *, loc=None, **kwargs)
上述参数描述:
xlabel / ylabel: 字符串,横坐标标签,
fontdict: 将字体的属性存储在字典,传递给函数
c or color: 字体颜色
labelpad: 标签距离轴的长度,默认为4.0
fontfamily or family: 字体种类
fontsize or size:字体的大小, float or {‘xx-small’, ‘x-small’, ‘small’, ‘medium’, ‘large’, ‘x-large’, ‘xx-large’}
fontweight or weigh: 字体的加粗程度 ,可选的值为{0-1000之间的数, ‘ultralight’, ‘light’, ‘normal’, ‘regular’, ‘book’, ‘medium’, ‘roman’, ‘semibold’, ‘demibold’, ‘demi’, ‘bold’, ‘heavy’, ‘extra bold’, ‘black’}
设置标题plt.title()
matplotlib.pyplot.title(label, fontdict=None, loc='center', pad=None, **kwargs)
#label: str 标题内容
#fontdict: dict 将文字属性存储在字典中
#loc: 标题的水平位置,{‘center’, ‘left’, ‘right’},默认为center
#pad: 标题离上轴的距离,默认的值参考rcParams[‘axes.titlepad’]
#y: 标题的垂直位置,为负数时,会在图的下方 参考 绘制子图的代码
添加图例 plt.legend()
matplotlib.pyplot.legend(*args, **kwargs)
#labels: 字符串列表,图列的名称
#loc: 图例的位置,用多种可选的位置,默认自适应调整,具体参考下面的链接
#fontsize: 文字大小 int or {‘xx-small’, ‘x-small’, ‘small’, ‘medium’, ‘large’, ‘x-large’, ‘xx-large’},通过该参数可以调整图例的大小。
#labelcolor: str or list, 图例的颜色
#markerscale:float, 相对于图中数据标记的大小,default: rcParams[“legend.markerscale”] (default: 1.0)
实例
折线图
-
案例1:实现温度变化(折线图)绘制
-
步骤:
1.先生成figure
2.准备数据,折线图点,x,y坐标个数一一对应
3.显示调用show()
import matplotlib.pyplot as plt plt.figure() # 画幕布 plt.plot([1,2,3,4,5,6,7],[17,17,18,15,11,11,13])# 横坐标,纵坐标 plt.savefig("./test.png") # 保存位置 plt.show()# 显示
效果如下
-
案例2:显示上海和北京的温度变化
import matplotlib.pyplot as plt import random plt.rcParams['font.sans-serif']=['SimHei'] #显示中文标签 plt.rcParams['axes.unicode_minus']=False plt.figure(figsize=(20,10),dpi=80) # 画幕布 # 准备数据 x = range(60) x_ch = ['11点{}分'.format(i) for i in x] y_shanghai = [random.uniform(15,18) for i in range(60)] # 变化范围15~18 # 准备北京的温度 y_beijing = [random.uniform(1,3) for i in range(60)] # 变化范围1~3 y_ticks = range(40) plt.plot(x,y_shanghai,label = '上海') # 显示北京的温度 plt.plot(x,y_beijing,color = 'r',linestyle = '--',label = '北京') # 修改刻度值 # 指定显示的x刻度的列表 # 第一个参数:必须是指 # 第二个参数:指定跟第一个参数对应的中文 plt.xticks(x[::5],x_ch[::5]) plt.yticks(y_ticks[::5]) # 增加标题,坐标描述 plt.xlabel('时间') plt.ylabel('温度') plt.title('北京和上海:从11点~12点的温度变化情况') # 增加图例的显示 plt.legend(loc = 'best') plt.savefig("./test2.png") plt.show()
效果如下:
-
显示北京和上海的温度变化(不同图)
import matplotlib.pyplot as plt import random plt.rcParams['font.sans-serif']=['SimHei'] #显示中文标签 plt.rcParams['axes.unicode_minus']=False # plt.figure(figsize=(20,10),dpi=80) # 画幕布 # 当在多个ax里面画图的时候,标签,刻度,在相应的坐标系里指定 fig,ax=plt.subplots(nrows=1,ncols=2,figsize=(20,8)) # 准备数据 x = range(60) x_ch = ['11点{}分'.format(i) for i in x] y_shanghai = [random.uniform(15,18) for i in range(60)] # 变化范围15~18 # 准备北京的温度 y_beijing = [random.uniform(1,3) for i in range(60)] # 变化范围1~3 y_ticks = range(40) # plt.plot(x,y_shanghai,label = '上海') ax[0].plot(x,y_shanghai,label = '上海') # 显示北京的温度 # plt.plot(x,y_beijing,color = 'r',linestyle = '--',label = '北京') ax[1].plot(x,y_beijing,color = 'r',linestyle = '--',label = '北京') # 修改刻度值 # 指定显示的x刻度的列表 # 第一个参数:必须是指 # 第二个参数:指定跟第一个参数对应的中文 # plt是对整理坐标系处理,ax是对每个坐标系处理 # plt.xticks(x[::5],x_ch[::5]) ax[0].set_xticks(x[::5],x_ch[::5]) ax[1].set_xticks(x[::5],x_ch[::5]) # plt.yticks(y_ticks[::5]) ax[0].set_yticks(y_ticks[::5]) ax[1].set_yticks(y_ticks[::5]) # 增加标题,坐标描述 # plt.xlabel('时间') ax[0].set_xlabel('时间') ax[1].set_xlabel('时间') # plt.ylabel('温度') ax[0].set_ylabel('温度') ax[1].set_ylabel('温度') # plt.title('北京和上海:从11点~12点的温度变化情况') ax[0].set_title('中午从11点~12点的温度变化情况') ax[1].set_title('中午从11点~12点的温度变化情况') # 增加图例的显示 # plt.legend(loc = 'best') ax[0].legend(loc = 'best') ax[1].legend(loc = 'best') plt.savefig("./test3.png") plt.show()
效果如下:
-
条形图
plt.bar(*x**,* *height**,* *width=0.8**,* *bottom=None**, ***,* *align='center'**,* *data=None**, ****kwargs*)
-
实例
-
显示每部电影的票房
import matplotlib.pyplot as plt plt.rcParams['font.sans-serif']=['SimHei'] #显示中文标签 plt.rcParams['axes.unicode_minus']=False # 柱状图 plt.figure(figsize=(20,8)) # 电影名字,每部电影对应的票房 movie_name = ['战狼2','哪吒之魔童降世','流浪地球','复仇者联盟4:终局之战','红海行动'] x = range(len(movie_name)) y = [5639,4934,4618,4205,3622] # 使用plt.bar显示 # plt.bar 填入的x坐标必须全是数字 plt.bar(x,y,0.2,color = ['b','r','g','y','c','m']) # 修改刻度,以及电影名字显示 plt.xticks(x,movie_name) plt.savefig('./test4') plt.show()
效果如下
-
显示每日票房与每周票房的对比
import matplotlib.pyplot as plt plt.rcParams['font.sans-serif']=['SimHei'] #显示中文标签 plt.rcParams['axes.unicode_minus']=False # 柱状图 plt.figure(figsize=(20,8)) movie_name = ['战狼2','哪吒之魔童降世','流浪地球'] first_day = [10587.6,10062.5,1275.7] first_weekend = [36224.9,34479.6,11830] x = range(len(movie_name)) # 使用plt.bar显示 plt.bar(x,first_day,width=0.2,label='首日票房') plt.bar([i+0.2 for i in x],first_weekend,width=0.2,label='首周票房') plt.xticks([i+0.1 for i in x],movie_name) plt.legend(loc='best') plt.title('首日票房与首周票房对比') plt.savefig('./test5') plt.show()
效果如下:
-
饼图
plt.pie(x,labels=,autopct=,colors)
-
显示每个电影的场次占比
# 电影的排片占比显示 import matplotlib.pyplot as plt plt.rcParams['font.sans-serif']=['SimHei'] #显示中文标签 plt.rcParams['axes.unicode_minus']=False # 创建figure plt.figure(figsize=(20,8)) movie_name = ['战狼2','哪吒之魔童降世','流浪地球','复仇者联盟4:终局之战','红海行动'] # 场次 place_count = [60605,54546,45819,28243,13270] # 显示饼图 plt.pie(place_count,labels=movie_name,autopct='%1.2f%%',colors=['b','r','y','g','c']) plt.legend(loc='best')# 添加图例 plt.axis('equal')# 变成圆形 plt.savefig('./test7') plt.show()
效果如下:
散点图
-
# 散点图 fig = plt.figure() ax = fig.add_subplot(111) ax.scatter(df['Age'], df['Sales']) plt.show()
堆积柱形图
# 堆积柱形图
var = df.groupby(['BMI', 'Gender']).Sales.sum()
var.unstack().plot(kind='bar', stacked=True, color=['red', 'blue'])
plt.show()
fig = plt.figure()
ax = fig.add_subplot(111)
ax.scatter(df[‘Age’], df[‘Sales’])
plt.show()
[外链图片转存中...(img-CGNBjCd7-1667046115224)]
### 堆积柱形图
```py
# 堆积柱形图
var = df.groupby(['BMI', 'Gender']).Sales.sum()
var.unstack().plot(kind='bar', stacked=True, color=['red', 'blue'])
plt.show()
Python 的绘图库 ↩︎