机器学习-多层感知机MLP

线性方法->多层感知机(MLP)

一个全连接(线性、dense)层有参数W∈Rm∗nW\in\R^{m*n}WRmn,b∈Rmb\in\R^mbRm,其用于计算输出y=Wx+b∈Rmy=Wx+b\in\R^my=Wx+bRm

  1. 线性回归:全连接层有1个输出
  2. softmax 回归:全连接层有m个输出+softmax
  3. 在这里插入图片描述

MLP

  • 激活函数是一个按元素的非线性函数
    sigmoid(x)=11+exp(−x)sigmoid(x)=\frac{1}{1+exp(-x)}sigmoid(x)=1+exp(x)1
    ReLU(x)=max(x,0)ReLU(x)=max(x,0)ReLU(x)=max(x,0)
    有一个隐藏层的多层感知机(黄色dense层)
    在这里插入图片描述

有一个隐藏层的MLP
超参数:num_hiddens

def relu(X):
	return torch.max(X,0)
W1 = nn.Parameter(torch.randn(num_inputs,num_hiddens)*0.01)
b1 = nn.Parameter(torch.zeros(num_hiddens))
W2 = nn.Parameter(torch.randn(num_hiddens,num_outputs)*0.01)
b2 = nn.Parameter(torch.zeros(num_outputs))

H = relu(X @ W1 + b1)
Y = H @ W2 + b2
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值