RAG简述

概述

基于NLP(自然语言处理)和IR(信息检索)的一项服务于AI的技术
旨在解决传统大模型数据陈旧易瞎编的特质
通过建立知识库,基于知识库进行回答
达到更专业更准确更有时效性的内容回答

RAG重点在于通过检索强化生成
检索相应知识库–可构建专属化的专业知识库(例:智能客服基于企业知识库进行回答)
生成回答–有依据更准确(基于RAG的大模型回答有理可依)

技术简述

回答前

RAG回答前流程

构建

构建相应的知识库系统
知识库可以是各种形式的文档、数据库等

切片

通过一定的规则对知识库文件进行切片
(可能是语义完整性、字数、段落等等)
方便后续进行索引

索引

Embedding:将文本映射到向量空间的关键技术
向量–用于后续判断相似性(通过Embedding模型将切片文本生成对应向量)
向量数据库–将向量维度化存储,便于判断相似性

回答时

RAG技术回答时流程

召回

返回与问题相似的片段
通过向量相似度进行判断
向量相似度(方式:余弦相似度,欧式距离,点积)

重排

在召回的基础上,采用不同的相似度计算逻辑对召回结果进行再次排序
相当于二次召回 但准确率较高
向量相似度计算逻辑不一样

生成

基于召回重排的知识库文本结合AI进行问题的回答

图片来源:【RAG 工作机制详解——一个高质量知识库背后的技术全流程】https://www.bilibili.com/video/BV1JLN2z4EZQ?vd_source=348c0caa35137a273d3953200a08e748

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值