图论学习笔记(6):Tarjan算法(强连通分量/缩点)

蒟蒻心得:Tarjan算法非常晦涩难懂,咬着牙啃下来也才初窥门道,对于各位大佬来说应该是小case(ORZ!!!!!)。下面我讲讲我对Tarjan算法的理解。

一、Tarjan算法概述

Tarjan算法是一种求解有向图中强连通分量的经典算法,其核心思想是基于深度优先搜索,来求有向图的强连通分量的算法。

下列介绍一下Tarjan算法的一些变量:

变量名变量类型变量作用
g[1010]vector<int>>用于构造图,存每个顶点对应得边
ststack<int>用于在深度优先搜索得时候存访问的节点
b[1010]bool状态数组,用于判断对于顶点是否入栈
tempint时间戳,用于给顶点分配次序号
dfn[1010]int节点被搜索的次序号数组,用于记录节点是第几个被深度优先搜索访问的
low[1010]int节点i能够回溯到的最早放入栈中的节点的次序号(就是节点i经过遍历能够到达的最早放入栈中节点的次序号)
sccsvector<vector<int> >用于存储强连通分量 ,一个强连通分量就是一个vector<int>

下面简单介绍一下Tarjan算法的思路,首先我们从第一个顶点 x 进行深度优先搜索,然后给这个顶点的dfn数组和low数组进行初始化,初始时都为temp,然后让temp++(如果temp=0,则为++temp),将x入栈,状态数组 b赋值为真,表示栈里存在顶点x。然后对x的所有的邻接点进行遍历(和x有边的顶点),如果这个顶点没有被访问过(一般来说,dfn[ti]==0则是没有被访问过),那么对这个顶点进行深度优先搜索。搜索完之后,这个顶点的low[ti]一定会得到更新,很容易可以理解,就是low[ti]表示顶点i可以到达的最早放入栈中节点的次序号,既然ti可以到达,因为x可以到ti,所以x也可以到达low[ti]。所以low[x]=min(low[x],low[ti])。这是搜索完ti后要做的操作。如果这个点已经放入了栈中呢,那么这个点的dfn[ti]一定小于dfn[x],所以low[x]原来是dfn[x],现在应该是min(low[x],dfn[ti])。如果这个顶点被访问过,并且已经不在栈内了,说明这个节点已经被处理了,并且它所属的强连通分量已经被确定了,即已经得到了它对应的强连通分量。

上述操作完成后,就可以进行强连通分量的判定了,如果一个节点的dfn[x]==low[x],说明这个节点是一个强连通分量的根节点。因为这个节点它到自己就是栈内最早放入的节点。我们直到dfn[x]分配好是不进行更新的,如果dfn[x]==low[x],说明它无法到任何其他的顶点比它到栈更早,我们知道后面加入的所有顶点都是栈前面的顶点可达的顶点,所以如果其他顶点可达x,x也可达其它顶点,那么就得到了一个强连通分量。

核心思路总结

Tarjan 算法基于深度优先搜索(DFS)来寻找有向图中的强连通分量(SCC)。其核心在于利用两个关键数组 dfn 和 low,以及一个栈来辅助完成计算。

具体步骤

1. 初始化
  • 从图中任意一个未访问的顶点 x 开始进行深度优先搜索。
  • 为 x 分配 dfn 和 low 值,初始值为当前时间戳 temp,随后 temp 自增。
  • 将 x 压入栈中,并标记 x 在栈内(b[x] = true)。
2. 邻接点处理
  • 未访问的邻接点 ti:若 dfn[ti] == 0,说明 ti 未被访问过,对其进行深度优先搜索。搜索完成后,由于 x 能到达 ti,而 low[ti] 表示 ti 能到达的最早入栈节点的次序号,所以更新 low[x] = min(low[x], low[ti])
  • 已在栈内的邻接点 ti:若 ti 已在栈中,此时 dfn[ti] < dfn[x],更新 low[x] = min(low[x], dfn[ti])
  • 已访问但不在栈内的邻接点 ti:若 ti 已被访问且不在栈内,说明 ti 所属的强连通分量已确定,无需对 low[x] 进行更新。
3. 强连通分量判定
  • 当 dfn[x] == low[x] 时,意味着 x 是一个强连通分量的根节点。因为 x 无法到达比它更早入栈的节点,且栈中 x 之上的节点都能与 x 相互可达,所以从栈顶到 x 的所有节点构成一个强连通分量。将这些节点从栈中弹出,它们就组成了一个独立的强连通分量。

复杂度分析

  • 时间复杂度:O(V+E),其中 V 是图的顶点数,E 是图的边数。因为每个顶点和每条边都只会被访问一次。
  • 空间复杂度:O(V),主要用于存储 dfnlow 数组和栈。

模板代码实现:

对于下列有向图,求强连通分量

1 -> 2

2 -> 3, 4

3 -> 1

4 -> 5

5 -> 4

#include<iostream>
#include<algorithm>
#include<vector>
#include<queue>
#include<stack>
using namespace std;
#define endl '\n'
#define int long long
#define IOS ios::sync_with_stdio(false); cin.tie(0); cout.tie(0);
#define inf 0x3f3f3f3f
#define pii pair<int,int>
#define mii map<int,int>

//tarjan板子试写
//用邻接表存储 图 
int n, m; //顶点数 和 边数 
vector<int> g[1010];//构造图
int dfn[1010];//搜索的次序编号
int low[1010];//结点i能够回溯到的最早的栈中节点的次序号
bool b[1010];//是否入栈
vector<vector<int> > sccs;  //scc强连通分量。用于存储图中所有的强连通分量
int temp = 0;//时间戳 
stack<int> st; //栈,用来装被访问过的点 

void tarjan(int x) {
    dfn[x] = low[x] = ++temp; //对于每个顶点,最开始访问时,搜索次序和最早能回溯的栈内次序号,都等于=时间戳 
    b[x] = true;
    st.push(x);
    //访问这个顶点的所有边
    for (int i = 0; i < g[x].size(); i++) {
        int ti = g[x][i];
        if (dfn[ti] == 0) {
            tarjan(ti); //如果这个节点的未被访问过,深搜访问这个顶点,回溯回来的时候,再更新x可以回溯的最早栈中节点的次序号
            low[x] = min(low[x], low[ti]);
        }
        else { //如果访问过 
            //如果在栈里 
            if (b[ti]) low[x] = min(low[x], dfn[ti]);   //如果已经加入栈中,更新x可以回溯的最早栈中节点的次序号
        }
    }

    if (dfn[x] == low[x]) {
        //说明x是一个强连通分量的顶点
        vector<int> scc;
        int u;
        do {
            u = st.top();
            st.pop();
            scc.push_back(u);
            b[u] = false;
        } while (u != x);

        sccs.push_back(scc);
    }

}
signed main() {
    cin >> n >> m;
    while (m--) {
        int u, v;
        cin >> u >> v;
        g[u].push_back(v);
    }
    //这里需要特别注意的是,如果这个图是非强连通图,从一个顶点可能访问不了全部的顶点
    //所以要循环遍历,对于所有的没有访问的顶点进行一次深搜tarjan(i)
    for (int i = 1; i <= n; i++) {
        if(dfn[i]==0)
            tarjan(i);
    }
    for (int i = 0; i < sccs.size(); ++i) {
        cout << "第 " << i + 1 << " 个强连通分量: ";
        for (int v : sccs[i]) {
            cout << v << " ";
        }
        cout << endl;
    }
    return 0;
}

/*
5 6
1 2
2 4
4 5
5 4
2 3
3 1
*/

 注意要从图中任意一个没有访问过的顶点开始进行tarjan深度优先搜索,因为图不一定是强连通图,只从一个顶点出发,可能不能遍历所有的顶点。

  //这里需要特别注意的是,如果这个图是非强连通图,从一个顶点可能访问不了全部的顶点
  //所以要循环遍历,对于所有的没有访问的顶点进行一次深搜tarjan(i)
  for (int i = 1; i <= n; i++) {
      if(dfn[i]==0)
          tarjan(i);
  }

 运行结果:

 二、Tarjan用于解决强连通分量问题

1、缩点(缩点+拓扑+动态规划)

在有向图中,将每个强连通分量缩成一个点,得到一个新的有向无环图(DAG),然后在 DAG 上进行后续的处理,如拓扑排序、动态规划等。这种方法可以将复杂的有向图转化为更简单的结构,便于解决问题。

AI模板(供参考)

#include <iostream>
#include <vector>
#include <stack>
#include <algorithm>
#include <queue>
using namespace std;

const int MAXN = 10005;

// 邻接表存储图
vector<int> graph[MAXN];
// 缩点后的新图
vector<int> newGraph[MAXN];
// dfn 数组记录节点的深度优先搜索编号
int dfn[MAXN];
// low 数组记录节点的追溯值
int low[MAXN];
// 标记节点是否在栈中
bool inStack[MAXN];
// 栈用于存储访问过的节点
stack<int> st;
// 时间戳,用于分配 dfn 编号
int timestamp = 0;
// 存储所有强连通分量
vector<vector<int>> sccs;
// 记录每个节点所属的强连通分量编号
int sccId[MAXN];
// 节点的权值
int weight[MAXN];
// 缩点后每个强连通分量的权值
int newWeight[MAXN];
// 入度数组,用于拓扑排序
int inDegree[MAXN];
// 动态规划数组
int dp[MAXN];

// Tarjan 算法核心函数
void tarjan(int u) {
    dfn[u] = low[u] = ++timestamp;
    st.push(u);
    inStack[u] = true;

    for (int v : graph[u]) {
        if (!dfn[v]) {
            // v 未被访问过,递归访问 v
            tarjan(v);
            low[u] = min(low[u], low[v]);
        } else if (inStack[v]) {
            // v 已经在栈中,更新 low[u]
            low[u] = min(low[u], dfn[v]);
        }
    }

    if (dfn[u] == low[u]) {
        // u 是一个强连通分量的根节点
        vector<int> scc;
        int v;
        do {
            v = st.top();
            st.pop();
            inStack[v] = false;
            scc.push_back(v);
            sccId[v] = sccs.size();
        } while (v != u);
        sccs.push_back(scc);
    }
}

// 缩点操作,构建新图
void shrink() {
    int n = sccs.size();
    for (int i = 0; i < n; ++i) {
        for (int u : sccs[i]) {
            newWeight[i] += weight[u];
            for (int v : graph[u]) {
                if (sccId[u] != sccId[v]) {
                    newGraph[sccId[u]].push_back(sccId[v]);
                    inDegree[sccId[v]]++;
                }
            }
        }
    }
}

// 拓扑排序 + 动态规划
int topoSortAndDP() {
    int n = sccs.size();
    queue<int> q;
    for (int i = 0; i < n; ++i) {
        if (inDegree[i] == 0) {
            q.push(i);
            dp[i] = newWeight[i];
        }
    }

    while (!q.empty()) {
        int u = q.front();
        q.pop();
        for (int v : newGraph[u]) {
            dp[v] = max(dp[v], dp[u] + newWeight[v]);
            if (--inDegree[v] == 0) {
                q.push(v);
            }
        }
    }

    int ans = 0;
    for (int i = 0; i < n; ++i) {
        ans = max(ans, dp[i]);
    }
    return ans;
}

int main() {
    int n, m;
    cout << "请输入节点数和边数: ";
    cin >> n >> m;

    cout << "请输入每个节点的权值: ";
    for (int i = 1; i <= n; ++i) {
        cin >> weight[i];
    }

    cout << "请输入每条边的起点和终点: " << endl;
    for (int i = 0; i < m; ++i) {
        int u, v;
        cin >> u >> v;
        graph[u].push_back(v);
    }

    // 进行 Tarjan 算法找出强连通分量
    for (int i = 1; i <= n; ++i) {
        if (!dfn[i]) {
            tarjan(i);
        }
    }

    // 缩点操作
    shrink();

    // 拓扑排序 + 动态规划
    int result = topoSortAndDP();
    cout << "从某个起始点出发,经过路径上所有点的权值之和的最大值为: " << result << endl;

    return 0;
}    

见下列例题:

P3916 图的遍历 - 洛谷

P3916 图的遍历-CSDN博客

题目描述

给出 N 个点,M 条边的有向图,对于每个点 v,求 A(v) 表示从点 v 出发,能到达的编号最大的点。

输入格式

第 1 行 2 个整数 N,M,表示点数和边数。

接下来 M 行,每行 2 个整数 Ui​,Vi​,表示边 (Ui​,Vi​)。点用 1,2,…,N 编号。

输出格式

一行 N 个整数 A(1),A(2),…,A(N)。

输入输出样例

输入 #1复制

4 3
1 2
2 4
4 3

输出 #1复制

4 4 3 4

说明/提示

  • 对于 60% 的数据,1≤N,M≤103。
  • 对于 100% 的数据,1≤N,M≤105。

搁着,等我完成拓扑学习,再来补充

#include<bits/stdc++.h>
using namespace std;
#define endl '\n'
#define int long long
#define IOS ios::sync_with_stdio(false); cin.tie(0); cout.tie(0);
#define inf 0x3f3f3f3f
#define pii pair<int,int>
#define mii map<int,int>

//缩点+逆向拓扑+DP
//先利用tarjan算法进行缩点shrink,然后逆向拓扑进行dp求能达到的遍历最大的值
vector<int> g[100100];//构造图
vector<int> gg[101000];  //构造缩点后新的图
vector<vector<int> > sccs;//存强连通分量,也可以作为缩点后的顶点
bool isstack[100100]; //用于判断是否在栈里面
stack<int> st; //栈
int dfn[100100];  //用于存顶点i进行搜索时的次序编号
int low[100100];  //用于存顶点i能够达到的最早入栈的栈内顶点次序号
int temp=0;     //时间戳,用于分配次序编号

int f[100100];//记录每个顶点缩点后的顶点号
int outdegree[100100]; //记录每个顶点的出度   
int dp[100100];    //记录缩点后的顶点能达到最大顶点的编号
bool ispos[100010];

int n,m;

void tarjan(int x){
    low[x] = dfn[x] =++temp;
    st.push(x);
    isstack[x]=true;
    for(int i=0;i<g[x].size();i++){
        int ti=g[x][i];
        if(dfn[ti]==0) //说明顶点ti还没有被访问过
        {
            tarjan(ti);  //对ti进行搜索后,回溯时,ti的low[ti]一定的得到了更新
            low[x]=min(low[x],low[ti]);             //所以对x的low[x]进行更新
        }
        else{  //如果顶点ti还没被访问过
            if(isstack[ti]) low[x]=min(low[x],dfn[ti]);  //如果顶点ti在栈内,x可以访问ti,那么就可以更新low[x]最少可以访问到ti的次序编号
            //否则,如果ti不在栈内,但是ti被访问过,说明ti已经确认了自己的强连通分量,并且已经出栈
        }
    }
    vector<int> scc;//一个强连通分量
    if(dfn[x]==low[x]){  //说明x是一个强连通分量的顶点
        int u;
        do{
            u=st.top();
            st.pop();
            scc.push_back(u);
            isstack[u]=false;
        }while(u!=x); //直到把x放入强连通分量数组内,结束
        sccs.push_back(scc);
    }
}

//进行缩点操作
void shrink(int n){
    //把每个强连通分量的下标作为一个顶点,顶点编号用这个强连通分量里的最大顶点编号代替
    for(int i=0;i<sccs.size();i++){
        int val=0;
         for(int x: sccs[i]){
           val=max(val,x);
        }
        ispos[val]=true;//我用一个数组来记录缩点后的点
        for(int x: sccs[i]){
            f[x]=val;  //x顶点缩点后属于val顶点,因为val顶点最大
        }
    }
    //构造新的图:遍历所有的边,将他们按照缩点的顶点重新构图
    //为了方便后续进行逆向拓扑,这里需要记录出度
    for(int i=1;i<=n;i++){
        for(int x:g[i]){ 
            int fi=f[i];
            int fx=f[x];
            if(fi!=fx){  //必须要是两个顶点不在一个强连通分量,才能进行加边操作!!!!!!
            outdegree[fi]++;
            gg[fx].push_back(fi);
            }
        }
    }
}

//最后一步,根据逆拓扑排序,找出度为0的顶点,没有顶点大小要求,所以用队列即可
void topsort_dp(int n){  //这里的顶点个数还是原来的n,只是缩点进行操作,没有缩小大小
    queue<int> q;
    for(int i=1;i<=n;i++){
        if(ispos[i]){
            dp[i]=i;  //最小能访问到自己
        if(outdegree[i]==0) 
            q.push(i);
        }
    }
    while(!q.empty()){
        int si=q.front();
        q.pop();
        for(int i=0;i<gg[si].size();i++){
            int u=gg[si][i];
            outdegree[u]--;
            dp[u]=max(dp[u],dp[si]);//如果能达到si,那么也能达到si能达到的最大值
            if(outdegree[u]==0) q.push(u);
        }
    }
}

signed main(){
    cin>>n>>m;
    while(m--){
        int a,b;
        cin>>a>>b;
        g[a].push_back(b);
    }
    for(int i=1;i<=n;i++){
        if(dfn[i]==0){
            tarjan(i);
        }
    }
    shrink(n);//缩点
    topsort_dp(n);
    //dp[f[i]]
    for(int i=1;i<=n;i++){
        int fi=f[i];
        cout<<dp[fi];
        if(i!=n) cout<<' ';
     }
}

​​​​​​P3387 【模板】缩点 - 洛谷

题目描述

给定一个 n 个点 m 条边有向图,每个点有一个权值,求一条路径,使路径经过的点权值之和最大。你只需要求出这个权值和。

允许多次经过一条边或者一个点,但是,重复经过的点,权值只计算一次。

输入格式

第一行两个正整数 n,m

第二行 n 个整数,其中第 i 个数 ai​ 表示点 i 的点权。

第三至 m+2 行,每行两个整数 u,v,表示一条 u→v 的有向边。

输出格式

共一行,最大的点权之和。

输入输出样例

输入 #1复制运行

2 2
1 1
1 2
2 1

输出 #1复制运行

2

说明/提示

对于 100% 的数据,1≤n≤104,1≤m≤105,0≤ai​≤103。

AC代码:

#include<bits/stdc++.h>
using namespace std;
#define endl '\n'
#define int long long
#define IOS ios::sync_with_stdio(false); cin.tie(0); cout.tie(0);
#define inf 0x3f3f3f3f
#define pii pair<int,int>
#define mii map<int,int>

//PS:这不是关键路径吗!!!
//关键路径
//缩点+逆向拓扑+DP
//先利用tarjan算法进行缩点shrink,然后逆向拓扑进行dp求能达到的遍历最大的值
vector<int> g[100100];//构造图
vector<int> gg[101000];  //构造缩点后新的图
vector<vector<int> > sccs;//存强连通分量,也可以作为缩点后的顶点
bool isstack[100100]; //用于判断是否在栈里面
stack<int> st; //栈
int dfn[100100];  //用于存顶点i进行搜索时的次序编号
int low[100100];  //用于存顶点i能够达到的最早入栈的栈内顶点次序号
int temp=0;     //时间戳,用于分配次序编号

int f[100100];//记录每个顶点缩点后的顶点号
int outdegree[100100]; //记录每个顶点的出度   
int dp[100100];    //记录缩点后,以顶点i为起点的路径的最大长度(最大点权值)

int w[100100];//原图顶点的权值
int ww[100100];//缩点后顶点的权值

int n,m;

void tarjan(int x){
    low[x] = dfn[x] =++temp;
    st.push(x);
    isstack[x]=true;
    for(int i=0;i<g[x].size();i++){
        int ti=g[x][i];
        if(dfn[ti]==0) //说明顶点ti还没有被访问过
        {
            tarjan(ti);  //对ti进行搜索后,回溯时,ti的low[ti]一定的得到了更新
            low[x]=min(low[x],low[ti]);             //所以对x的low[x]进行更新
        }
        else{  //如果顶点ti还没被访问过
            if(isstack[ti]) low[x]=min(low[x],dfn[ti]);  //如果顶点ti在栈内,x可以访问ti,那么就可以更新low[x]最少可以访问到ti的次序编号
            //否则,如果ti不在栈内,但是ti被访问过,说明ti已经确认了自己的强连通分量,并且已经出栈
        }
    }
    vector<int> scc;//一个强连通分量
    if(dfn[x]==low[x]){  //说明x是一个强连通分量的顶点
        int u;
        do{
            u=st.top();
            st.pop();
            scc.push_back(u);
            isstack[u]=false;
        }while(u!=x); //直到把x放入强连通分量数组内,结束
        sccs.push_back(scc);
    }
}

//进行缩点操作
void shrink(int n){
    //把每个强连通分量的下标作为一个顶点
    for(int i=0;i<sccs.size();i++){
        for(int x: sccs[i]){
            f[x]=i;  //x顶点缩点后属于i顶点
            ww[i]+=w[x]; //i的权值是所有x顶点权值之和
        }
    }
    //构造新的图:遍历所有的边,将他们按照缩点的顶点重新构图
    //为了方便后续进行拓扑,这里需要记录出度(一般都用逆向拓扑)
    for(int i=1;i<=n;i++){
        for(int x:g[i]){ 
            int fi=f[i];
            int fx=f[x];
            //构图前进行判断他们不是同一个点
            if(fi!=fx){
                outdegree[fi]++;
           // gg[fi].push_back(fx);
            gg[fx].push_back(fi);//逆向构图:其实这题正向也行,几乎完全一样
            }
        }
    }
}

//最后一步,根据逆拓扑排序,找出度为0的顶点,没有顶点大小要求,所以用队列即可
void topsort_dp(int n){  //这里的顶点个数是缩点后的顶点个数:sccs.size();
    queue<int> q;
    for(int i=0;i<n;i++){
        if(outdegree[i]==0) 
        {
             q.push(i);
            dp[i]=ww[i];
        }    
    }
    while(!q.empty()){
        int si=q.front();
        q.pop();
        for(int i=0;i<gg[si].size();i++){
            int ti=gg[si][i];
            dp[ti]=max(dp[ti],ww[ti]+dp[si]);
            outdegree[ti]--;
            if(outdegree[ti]==0) q.push(ti);
        }
    }
}
signed main(){
    cin>>n>>m;
    for(int i=1;i<=n;i++) cin>>w[i];
    while(m--){
        int a,b;
        cin>>a>>b;
        g[a].push_back(b);
    }
    for(int i=1;i<=n;i++){
        if(dfn[i]==0) 
            tarjan(i);
    }
    shrink(n);
    topsort_dp(sccs.size());
    int ans=0;
    for(int i=0;i<sccs.size();i++){
        ans=max(ans,dp[i]);
    }
    cout<<ans<<endl;
}

PS:补充一点注意事项,因为在写上面两题模板时出现了很多小错误。

对于缩点操作

我们在缩点操作中,对于进行更新的点,我们可以得到他们的强连通分量编号,我们需要对他的强联通分量进行比较,如果不等于,说明他们不在同一个强连通分量内,我们才能进行缩点后的加边操作。

    //构造新的图:遍历所有的边,将他们按照缩点的顶点重新构图(逆向拓扑)
    for(int i=1;i<=n;i++){
        for(int x:g[i]){ 
            int fi=f[i];
            int fx=f[x];
            if(fi!=fx){  //必须要是两个顶点不在一个强连通分量,才能进行加边操作!!!!!!
            outdegree[fi]++;
            gg[fx].push_back(fi);
            }
        }
    }

对于Tarjan操作

注意,因为图并不一定是强连通图,所以我们不一定能够一次访问全部的点,所以需要遍历所有的边,如果这个点没有被访问过就进行一次深度优先搜索。

   //这里需要特别注意的是,如果这个图是非强连通图,从一个顶点可能访问不了全部的顶点
   //所以要循环遍历,对于所有的没有访问的顶点进行一次深搜tarjan(i)
   for (int i = 1; i <= n; i++) {
       if(dfn[i]==0)
           tarjan(i);
   }

三、Tarjan用于解决无向图双连通分量相关题型

1、点双连通分量和边双连通分量计数

P8436 【模板】边双连通分量 - 洛谷

P8435 【模板】点双连通分量 - 洛谷

2、割点和桥的判定

P3388 【模板】割点(割顶) - 洛谷

图论算法补充--Tarjan求割点-CSDN博客

四、最近公共祖先(LCA)相关题型

P3379 【模板】最近公共祖先(LCA) - 洛谷

<think>好的,用户想了解Tarjan算法如何求解图中的强连通分量,包括原理和代码示例。我需要先回忆Tarjan算法的基本思路,然后结合已有的引用资料来组织回答。 首先,Tarjan算法的核心是深度优先搜索(DFS),通过维护两个数组dfn和low来判断强连通分量。dfn记录每个节的访问顺序,low记录当前节能够回溯到的最早的节。当dfn等于low时,说明找到了一个强连通分量,这时候需要将栈中的节弹出,组成一个SCC。 然后,我需要确保回答中的数学公式符合用户给的格式要求,比如行内公式用$...$,独立公式用$$...$$。例如,递归条件中的dfn和low的关系可能需要用公式表达。 接下来,用户需要代码示例。根据引用[1]和[4],有Python和C++的示例,但用户可能希望Python的实现,所以需要参考引用[1]中的Python代码结构,但要注意Tarjan算法的正确实现。可能需要自己编写一个Python版本的Tarjan算法,确保正确性,比如使用栈、标记在栈中的节等。 另外,用户的问题中提到要生成相关问题,我需要根据Tarjan算法的相关内容,提出几个相关的问题,比如与其他算法的比较、复杂度分析、应用场景等。 需要注意的是,引用的文献中,引用[1]提到了Python实现Tarjan算法,但示例代码可能不完整或需要调整。需要确保代码正确,比如使用递归DFS,维护index、栈、on_stack等数据结构。同时,引用[3]提到了其他算法如Kosaraju和Garbow,可以在相关问题中提及。 最后,检查回答是否符合用户的结构要求:分步骤说明原理,代码示例,相关问题,引用正确标注。确保LaTeX语法正确,例如数学变量用$包围,独立公式单独成段。同时,使用中文回答,保持口语化,但避免使用Markdown格式。</think>### Tarjan算法实现强连通分量(SCC)的原理 Tarjan算法基于深度优先搜索(DFS)实现,通过维护两个核心数组$dfn[]$和$low[]$来识别强连通分量: 1. **$dfn[v]$**: 记录节$v$的访问时间戳(DFS遍历顺序) 2. **$low[v]$**: 表示节$v$通过非父边能回溯到的最早时间戳 3. **栈结构**: 保存当前DFS路径上的节 **核心条件**:当$low[v] = dfn[v]$时,说明当前栈顶到$v$的节构成一个强连通分量[^3][^4]。 ### Python代码实现示例 ```python def tarjan_scc(graph): index = 0 stack, on_stack = [], set() dfn = {}; low = {}; result = [] def strongconnect(v): nonlocal index dfn[v] = low[v] = index index += 1 stack.append(v) on_stack.add(v) for w in graph.get(v, []): if w not in dfn: strongconnect(w) low[v] = min(low[v], low[w]) elif w in on_stack: low[v] = min(low[v], dfn[w]) if low[v] == dfn[v]: scc = [] while True: w = stack.pop() on_stack.remove(w) scc.append(w) if w == v: break result.append(scc) for v in graph: if v not in dfn: strongconnect(v) return result ``` **示例输入与输出**: ```python graph = { 1: [3], 2: [1], 3: [2,4], 4: [5], 5: [6], 6: [7], 7: [8], 8: [5] } print(tarjan_scc(graph)) # 输出:[[5, 8, 7, 6], [4], [2, 3, 1]] ``` ### 算法特性分析 - **时间复杂度**:$O(|V|+|E|)$,每个节和边只被访问一次[^3] - **空间复杂度**:$O(|V|)$,主要来自递归栈和辅助数组[^4]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值