- 博客(2)
- 收藏
- 关注
原创 深度学习 Datawhale X 李宏毅苹果书AI夏令营#AI夏令营 #Datawhale #夏令营(超级详细,快来)
在优化过程中,损失函数的梯度(即参数对损失的微分)可能会变为零,导致梯度下降算法无法继续更新参数。鞍点则是梯度为零但并非最低点的位置,在某些方向上损失会增加,在其他方向上损失则会减少。要判断一个临界点(梯度为零的点)是局部极小值还是鞍点,可以利用**泰勒级数近似**损失函数在临界点附近的形状。相反,临界点的特征值通常一半为正、一半为负,这意味着有一半的方向可以让损失进一步下降。在深度学习优化中,理解局部极小值和鞍点的区别及其应对策略,对于提升模型性能非常重要。希望能对大家有所帮助!2. 局部极小值与鞍点。
2024-08-27 13:23:13
178
原创 30分钟体验baseline!#AI夏令营 #Datawhale #夏令营
2.之后输入完代码后会有对应的文件,感觉好神奇,会用鼠标就可以!(等待二十分钟会有result.zip下载下来就可以了)是不是很神奇。3.也是了解了一点,任务一也是对cv有一定了解。下载baseline相关文件(有手就行)
2024-08-25 21:08:51
173
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人