快速排序---双指针法

  • 1、定义两个指针prev和cur,分别指向left和left+1。

  • 2、定义一个变量keyi,用于保存基准值的下标,初始值为left。

  • 3、进入一个循环,循环条件是cur <= right,即cur指针没有越界。

  • 4、在循环中,如果a[cur]小于基准值a[keyi],则将prev指针右移一位,并交换a[prev]和a[cur]的值,保证prev指针之前的元素都小于基准值。

  • 5、将cur指针右移一位。

  • 6、重复步骤4到步骤6,直到cur指针越界。

  • 7、最后,将基准值a[keyi]和a[prev]交换位置,将基准值放在正确的位置上。

  • 8、返回分割点的下标prev。

同样实现了将数据分成两部分,左边的元素都小于等于基准值,右边的元素都大于基准值。

代码:

int PartSort3(int* a, int left, int right)
{
    //三数取中优化
	//int midi = NumBers(a, left, right);
	//Swap(&a[left], &a[midi]);
    
    int prev = left;
    int cur = prev + 1;
    int key = left;
    
    while(cur <= right){
        if(a[cur]< a[key] && ++prev != cur){
            Swap(&a[prev],&a[cur]);
        }
        cur++;
    }
    
    Swap(&a[prev],&a[key]);
    return prev;
}

<think>好的,我现在需要帮助用户了解双指针法的实现和应用场景。首先,我得回顾一下双指针法的基本概念,确保自己理解正确。根据用户提供的引用内容,特别是引用[1]和[4],双指针法主要是用两个指针在数组或字符串中高效解决问题,比如处理有序数组、移除元素或合并数组等。 接下来,我应该明确双指针法的分类。根据引用[3]和[4],常见的类型包括对撞指针和快慢指针。对撞指针通常用于有序数组,比如两数之和的问题,而快慢指针可能用于检测循环或移除元素。需要分别举例子说明这两种类型的实现步骤。 然后,应用场景部分需要覆盖用户提到的引用内容,比如合并有序数组(引用[2])、移除元素、判断回文等。每个场景最好给出具体的例子,比如LeetCode题目,这样用户更容易理解。 实现示例部分,用户可能需要代码示例,但用户的问题中提到了Python的快速排序示例,但双指针法的示例可能用其他语言如JavaScript或C。不过用户现在可能希望看到Python的示例,或者至少清晰的伪代码。需要确保代码符合用户提到的引用中的案例,比如合并数组或移除元素。 另外,用户提供的引用[4]提到了快速排序中的双指针应用,这里可能需要简要说明在快速排序中如何利用双指针进行分区操作,这也是一个重要的应用场景。 需要注意用户的引用中有提到逆向双指针在合并数组中的应用,比如引用[2]中的LeetCode88题,这可能需要在应用场景中特别指出逆向处理的情况,避免覆盖原有数据。 最后,生成的相关问题需要围绕双指针法的优化、与其他算法比较、具体应用等展开,帮助用户进一步学习。 现在需要组织这些信息,确保结构清晰,分点说明实现步骤、应用场景,并给出代码示例。同时,引用正确的来源,比如在合并数组时引用[2],在快速排序部分引用[4]等。</think>### 双指针法实现与应用场景详解 #### 一、双指针法原理 双指针法通过维护两个指针(通常为索引或位置标记)在数组或字符串中协同遍历,以$O(n)$或$O(n \log n)$的时间复杂度解决特定问题[^1]。其核心思想是通过指针的移动条件,减少不必要的遍历次数,提升效率。 #### 二、实现方式分类 1. **对撞指针** - **定义**:两个指针从数组两端向中间移动,适用于有序数组。 - **示例代码(两数之和)**: ```python def two_sum(nums, target): left, right = 0, len(nums)-1 while left < right: current_sum = nums[left] + nums[right] if current_sum == target: return [left+1, right+1] # 假设索引从1开始 elif current_sum < target: left += 1 else: right -= 1 return [] ``` **应用场景**:有序数组的两数之和(如LeetCode 167题)[^3]。 2. **快慢指针** - **定义**:两个指针以不同速度移动,常用于检测循环或删除重复项。 - **示例代码(移除元素)**: ```python def remove_element(nums, val): slow = 0 for fast in range(len(nums)): if nums[fast] != val: nums[slow] = nums[fast] slow += 1 return slow ``` **应用场景**:移除数组中特定值(如LeetCode 27题)。 3. **分离指针(逆向双指针)** - **定义**:两个指针分别操作不同数组,避免覆盖原始数据。 - **示例代码(合并有序数组)**: ```python def merge_sorted_arrays(nums1, m, nums2, n): p1, p2, p = m-1, n-1, m+n-1 while p1 >= 0 and p2 >= 0: if nums1[p1] > nums2[p2]: nums1[p] = nums1[p1] p1 -= 1 else: nums1[p] = nums2[p2] p2 -= 1 p -= 1 nums1[:p2+1] = nums2[:p2+1] ``` **应用场景**:合并两个有序数组(如LeetCode 88题)[^2]。 #### 三、核心应用场景 1. **有序数组操作** - 两数之和、三数之和、最接近的三数之和等[^3]。 2. **字符串处理** - 判断回文字符串(对撞指针)、反转字符串中的元音字母等。 3. **链表问题** - 链表中环的检测(快慢指针)、相交链表判断。 4. **快速排序优化** - 双指针用于划分基准值的左右子序列,提升分区效率(如引用[4]中的快速排序实现)。 #### 四、算法优势 - **时间复杂度低**:多数问题可优化至$O(n)$。 - **空间复杂度低**:通常为$O(1)$,原地操作。 - **逻辑清晰**:通过指针条件简化复杂遍历逻辑。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值