基于图的表示在模式识别中的应用
1. 引言
在当今的模式识别领域,基于图的表示方法因其灵活性和强大的表达能力而备受关注。2019年6月19日至21日,第12届IAPR-TC-15国际研讨会(GbRPR 2019)在法国图尔成功举办,会议聚焦于基于图的表示在模式识别中的应用。这次研讨会吸引了来自全球的顶尖学者和研究人员,共同探讨了图编辑距离、图匹配、图问题的机器学习、网络和图嵌入、谱图问题以及图问题的并行算法等前沿课题。
1.1 研讨会背景
此次研讨会由图尔大学计算机科学实验室(LIFAT)主办,得到了图尔市、法国中央瓦尔德卢瓦尔地区、图尔大学及其工程学院、研究联盟ICVL以及公司ASPIDE的大力支持。研讨会的成功举办离不开所有参与者和组织者的共同努力。
1.2 组织结构
研讨会的组织团队由多纳泰罗·孔特、让-伊夫·拉梅尔和帕斯夸莱·福贾领导,他们来自法国图尔大学和意大利萨莱诺菲西卡诺大学。此外,程序委员会成员包括来自多个国家的专家,如Sebastien Bougleux(法国诺曼底大学)、Luc Brun(法国诺曼底大学)、Ananda S. Chowdhury(印度贾达普大学)等。
1.3 会议内容概述
会议共收录了22篇高质量的论文,这些论文涵盖了广泛的图相关主题。以下是会议论文的主要主题:
- 图编辑距离 :研究图编辑距离的计算方法及其在不同应用场景中的优化。
- 图匹配 :探讨图匹配算法的设计与实现,包括次优图匹配和基于图的关键词定位。