图嵌入与图神经网络
1. 引言
在当今的数据科学领域,图结构数据因其丰富的连接信息和复杂的关系网络而备受关注。图嵌入(Graph Embedding)和图神经网络(Graph Neural Networks, GNNs)是处理这类数据的核心技术。图嵌入旨在将图结构数据映射到低维向量空间,从而使得传统的机器学习算法能够处理图数据。而图神经网络则是一种专门为图结构数据设计的神经网络模型,它通过消息传递机制捕捉节点之间的复杂关系。
本文将深入探讨图嵌入与图神经网络的基本原理、应用场景以及最新的研究进展,帮助读者理解和应用这些前沿技术。
2. 图嵌入
2.1 图嵌入的基本概念
图嵌入是指将图中的节点映射到一个低维的向量空间,使得这些向量能够保留图中节点之间的结构信息和属性信息。图嵌入的目标是使得相似的节点在向量空间中彼此靠近,而不相似的节点则相距较远。
2.1.1 嵌入方法分类
根据嵌入方法的不同,图嵌入可以分为以下几类:
- 基于谱方法的嵌入 :利用图的拉普拉斯矩阵或邻接矩阵的特征值和特征向量进行嵌入。常见的方法包括拉普拉斯特征映射(Laplacian Eigenmaps)和谱聚类(Spectral Clustering)。
- 基于随机游走的嵌入 :通过在图上进行随机游走,学习节点之间的相似性。DeepWalk和Node2Vec是典型的基于随机游走的嵌入方法。
- 基于矩阵分解的嵌入 :将图的邻接矩阵或拉普拉斯矩