python数组的操作

续 python-NumPy库  内容。

1、数组变维

函数名称函数介绍
reshape在不改变数组元素的条件下,修改数组的形状
flat属性返回是一个迭代器,可以用 for 循环遍历其中的每一个元素
flatten以一维数组的形式返回一份数组的副本,对副本的操作不会影响到原数组
ravel返回一个连续的扁平数组(即展开的一维数组),与 flatten不同,它返回的是数组视图(修改视图会影响原数组)

1.1 reshape

reshape() 函数允许你在不改变数组数据的情况下,改变数组的维度。

reshape() 返回的是一个新的数组,原数组的形状不会被修改。reshape() 可以用于多维数组,例如将一个一维数组重塑为二维数组。

但是,reshape后产生的新数组是原数组的一个视图,即它与原数组共享相同的数据,但可以有不同的形状或维度,且对视图的修改会直接影响原数组。

元素总数必须匹配:新形状中的元素总数必须与原数组中的元素总数相同。

例如,一个长度为6的一维数组可以被重塑为 (2, 3) 或 (3, 2),表示原数组被重塑为2行3列或3行2列的数组,但不能被重塑为 (2, 2)。

#reshape  ,改变数组形状
a = np.array([[1, 2, 3], [4, 5, 6]])
b = a.reshape(3, 2)
# print("b=",b)

-1 作为占位符:你可以使用 -1 作为占位符,让 numpy 自动计算某个维度的大小。

例如:

import numpy as np
a = np.array([1,2,3,4,5,6])
b = a.reshape((3,-1))
print(b)

 reshape() 还可以将一维数组重塑为三维数组:

import numpy as np
arr = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12])

# 使用 reshape() 函数将其转换为三维数组
arr1 = arr.reshape((2, 3, 2))

print(arr1)

1.2 flat

返回一个一维迭代器,用于遍历数组中的所有元素。无论数组的维度如何,ndarray.flat属性都会将数组视为一个扁平化的一维数组,按行优先的顺序遍历所有元素。

语法: ndarray.flat

import numpy as np

a = np.array([1, 2, 3])
print(a.flat[0])
print(a.flat[1])
print(a.flat[2])


def flat_test():
    array_one = np.arange(4).reshape(2,2)
    print("原数组元素:")
    for i in array_one:
        print(i,end=" ")
    print()
    print("使用flat属性,遍历数组:")
    for i in array_one.flat:
        print(i,end=" ")
flat_test()

1.3 flatten()

用于将多维数组转换为一维数组。flatten() 返回的是原数组的一个拷贝,因此对返回的数组进行修改不会影响原数组

语法:ndarray.flatten(order='C')

参数

order: 指定数组的展开顺序。

  • 'C':按行优先顺序展开(默认)。

  • 'F':按列优先顺序展开。

  • 'A':如果原数组是 Fortran 连续的,则按列优先顺序展开;否则按行优先顺序展开。

  • 'K':按元素在内存中的顺序展开。

import numpy as np

# 创建一个二维数组
arr = np.array([[1, 2, 3], [4, 5, 6]])

# 使用 flatten 方法按行优先顺序展开

arrC= arr.flatten(order='C') #按行优先顺序展开
arrF= arr.flatten(order='F') #按列优先顺序展开
arrA= arr.flatten(order='A') #按默认顺序展开   

# 输出:

print(arrC) 
print(arrF)
print(arrA)

1.4 ravel()

用于将多维数组转换为一维数组。与 flatten() 不同,ravel() 返回的是原数组的一个视图(view),而不是副本。因此,对返回的数组进行修改会影响原数组

语法:ndarray.ravel()

参数

order: 指定数组的展开顺序。

  • 'C':按行优先顺序展开(默认)。

  • 'F':按列优先顺序展开。

  • 'A':如果原数组是 Fortran 连续的,则按列优先顺序展开;否则按行优先顺序展开。

  • 'K':按元素在内存中的顺序展开。

import numpy as np

# 创建一个二维数组
arr = np.array([[1, 2, 3], [4, 5, 6]])

# 使用 ravel 方法按行优先顺序展开
ravel_arr = arr.ravel()

print(ravel_arr)
# 输出:
# [1 2 3 4 5 6]

ravel_arr[-1] = 7
print(arr)
# 输出:
# [[1 2 3]
#  [4 5 7]]

2、数组转置

函数名称说明
transpose将数组的维度值进行对换,比如二维数组维度(2,4)使用该方法后为(4,2)
ndarray.T与 transpose 方法相同

案例:

import numpy as np

def fun1():
    arr = np.arange(12).reshape(3, 4)
    print("原数组:")
    print(arr)
    print("使用transpose()函数后的数组:")
    print(np.transpose(arr))


def fun2():
    arr = np.arange(12).reshape(3, 4)
    print("原数组:")
    print(arr)
    print("数组转置:")
    print(arr.T)
fun1()
fun2()

3、升维和降维

多维数组(也称为 ndarray)的维度(或轴)是从外向内编号的。这意味着最外层的维度是轴0,然后是轴1,依此类推。

函数名称参数说明
expand_dims(arr, axis)arr:输入数组 axis:新轴插入的位置在指定位置插入新的轴(相对于结果数组而言),从而扩展数组的维度
squeeze(arr, axis)arr:输入数的组 axis:取值为整数或整数元组,用于指定需要删除的维度所在轴,指定的维度值必须为 1 ,否则将会报错,若为 None,则删除数组维度中所有为 1 的项删除数组中维度为 1 的项

案例1:增加数组维度

import numpy as np

# 创建一个一维数组
a = np.array([1, 2, 3])
print(a.shape)  # 输出: (3,)

# 在第 0 维插入新维度
b = np.expand_dims(a, axis=0)
print(b)
# 输出:
# [[1 2 3]]
print(b.shape)  # 输出: (1, 3)

# 在第 1 维插入新维度
c = np.expand_dims(a, axis=1)
print(c)
# 输出:
# [[1]
#  [2]
#  [3]]
print(c.shape)  # 输出: (3, 1)

 降维

import numpy as np

# 创建一个数组
c = np.array([[[1, 2, 3]]])
print(c.shape)  # 输出: (1, 1, 3)

# 移除第 0 维
d = np.squeeze(c, axis=0)
print(d)
# 输出:
# [[1 2 3]]
print(d.shape)  # 输出: (1, 3)

# 移除第 1 维
e = np.squeeze(c, axis=1)
print(e)
# 输出:
# [[1 2 3]]
print(e.shape)  # 输出: (1, 3)

# 移除第 2 维
f = np.squeeze(c, axis=2)
print(f)
# 输出:
# ValueError: cannot select an axis to squeeze out which has size not equal to one
print(f.shape)
import numpy as np

# 创建一个数组
g = np.array([[[1, 2, 3]], [[4, 5, 6]]])
print(g.shape)  # 输出: (2, 1, 3)

# 移除第 1 维
h = np.squeeze(g, axis=1)
print(h)
# 输出:
# [[1 2 3]
#  [4 5 6]]
print(h.shape)  # 输出: (2, 3)

4 连接数组

函数名称参数说明
hstack(tup)tup:可以是元组,列表,或者numpy数组,返回结果为numpy的数组水平顺序堆叠序列中数组(列方向)
vstack(tup)tup:可以是元组,列表,或者numpy数组,返回结果为numpy的数组垂直方向堆叠序列中数组(行方向)

hstack函数要求堆叠的数组在垂直方向()上具有相同的形状。如果行数不一致,hstack() 将无法执行,并会抛出 ValueError 异常。

vstack() 要求堆叠的数组在水平方向()上具有相同的形状。如果列数不一致,将无法执行堆叠操作。

vstack() 和 hstack() 要求堆叠的数组在某些维度上具有相同的形状。如果维度不一致,将无法执行堆叠操作。

案例:hstack

import numpy as np

# 创建两个形状不同的数组,行数一致
arr1 = np.array([[1, 2], [3, 4]])
arr2 = np.array([[5], [6]])
print(arr1.shape) 	# (2, 2)
print(arr2.shape)	# (2, 1)

# 使用 hstack 水平堆叠数组
result = np.hstack((arr1, arr2))
print(result)
# 输出:
# [[1 2 5]
#  [3 4 6]]
# 创建两个形状不同的数组,行数不一致
arr1 = np.array([[1, 2], [3, 4]])
arr2 = np.array([[5], [6], [7]])
print(arr1.shape)	# (2, 2)
print(arr2.shape)	# (3, 1)

# 使用 hstack 水平堆叠数组
result = np.hstack((arr1, arr2))

print(result)

# ValueError: all the input array dimensions except for the concatenation axis must match exactly
# 第一个数组在第0维有2个元素,而第二个数组在第0维有3个元素,因此无法直接连接。

vstack:       

import numpy as np 

 # 创建两个一维数组
 arr1 = np.array([1, 2, 3])
 arr2 = np.array([4, 5, 6])
 ​
 # 使用 vstack 垂直堆叠数组
 result = np.vstack((arr1, arr2))
 ​
 print(result)
 # 输出:
 # [[1 2 3]
 #  [4 5 6]]
 import numpy as np
 # 创建两个形状不同的数组,列数一致
 arr1 = np.array([[1, 2, 3], [4, 5, 6]])
 arr2 = np.array([[7, 8, 9], [10, 11, 12]])
 ​
 # 使用 vstack 垂直堆叠数组
 result = np.vstack((arr1, arr2))
 ​
 print(result)
 # 创建两个形状不同的数组,列数不一致
 arr1 = np.array([[1, 2], [3, 4]])
 arr2 = np.array([[5, 6, 7], [8, 9, 10]])
 ​
 # 使用 vstack 垂直堆叠数组
 result = np.vstack((arr1, arr2))
 ​
 print(result)
 # ValueError: all the input array dimensions except for the concatenation axis must match exactly
 # 第一个数组在第1维有2个元素,而第二个数组在第1维有3个元素,因此无法直接连接。

 

 

5 分割数组

函数名称参数说明
hsplit(ary, indices_or_sections)ary:原数组 indices_or_sections:按列分割的索引位置将一个数组水平分割为多个子数组(按列
vsplit(ary, indices_or_sections)ary:原数组 indices_or_sections:按行分割的索引位置将一个数组垂直分割为多个子数组(按行
import numpy as np

'''
    hsplit 函数:
        1、将一个数组水平分割为多个子数组(按列)
        2、ary:原数组
        3、indices_or_sections:按列分割的索引位置
'''
# 创建一个二维数组
arr = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]])

# 使用 np.hsplit 将数组分割成三个子数组
# 分割点在索引1和3处,这意味着:
# 第一个子数组将包含从第0列到索引1(不包括索引1)的列,即第0列。
# 第二个子数组将包含从索引1(包括索引1)到索引3(不包括索引3)的列,即第1列到第2列。
# 第三个子数组将包含从索引3(包括索引3)到末尾的列,即第3列。
result = np.hsplit(arr, [1, 3])

# 查看结果
print("第一个子数组:\n", result[0])  # 输出包含第0列的子数组
print("第二个子数组:\n", result[1])  # 输出包含第1列和第2列的子数组
print("第三个子数组:\n", result[2])  # 输出包含第3列的子数组


'''
    vsplit 函数:
        1、将一个数组垂直分割为多个子数组(按行)
        2、ary:原数组
        3、indices_or_sections:按列分割的索引位置
'''
array_one = np.arange(12).reshape(2,6)
print('array_one 原数组:\n', array_one)
array_two = np.vsplit(array_one,[1])
print('vsplit 之后的数组:\n', array_two)

6 、矩阵运算

np.dot

是一个通用的点积函数,适用于多种维度的数组。

  • 对于二维数组(矩阵),np.dot 等价于矩阵乘法。

  • 对于一维数组(向量),np.dot 计算的是向量的点积(内积)。

案例1:矩阵运算

import numpy as np

a = np.array([[1, 2], [3, 4]])
b = np.array([[5, 6], [7, 8]])

result = np.dot(a, b)
print(result)

案例2:向量点积

计算公式为:a\cdot b=a_{1}b_{1}+a_{2}b_{2}+⋯+a_{n}b_{n}

 a = np.array([1, 2, 3])
 b = np.array([4, 5, 6])
 ​
 result = np.dot(a, b)
 print(result)

np.matmul

是专门用于矩阵乘法的函数,适用于二维及更高维度的数组。

案例:矩阵相乘

 a = np.array([[1, 2], [3, 4]])
 b = np.array([[5, 6], [7, 8]])
 ​
 result = np.matmul(a, b)
 print(result)

np.dot是通用点积函数,np.matmul专门用于矩阵运算,性能要好于np.dot

np.linalg.det

计算一个方阵(行数和列数相等的矩阵)的行列式。

案例:

 a = np.array([[1, 2], [3, 4]],dtype=int)
 # 计算行列式
 det_a = np.linalg.det(a)
 print(det_a)
 ​
 #输出:
 -2.0000000000000004

结果不是-2,这是由于浮点数的二进制表示和计算过程中的舍入误差导致的。可以通过四舍五入来近似表示:

 det_a = np.round(np.linalg.det(a))

7、数组元素的增删改查

7.1 resize

函数名称参数说明
resize(a, new_shape)a:操作的数组 new_shape:返回的数组的形状,如果元素数量不够,重复数组元素来填充新的形状返回指定形状的新数组

案例:

 import numpy as np
 ​
 array_one = np.arange(6).reshape(2, 3)
 print(array_one)
 print('resize 后数组:\n', np.resize(array_one, (3, 4)))
 ​
 # 输出:
 # [[0 1 2 3]
 #  [4 5 0 1]
 #  [2 3 4 5]]

最后一行代码将数组形状修改为(3, 4),原数组的元素数量不够,则重复原数组的元素填充。

7.2 append

函数名称参数说明
append(arr, values, axis=None)arr:输入的数组 values:向 arr 数组中添加的值,需要和 arr 数组的形状保持一致 axis:默认为 None,返回的是一维数组;当 axis =0 时,追加的值会被添加到行,而列数保持不变,若 axis=1 则与其恰好相反在数组的末尾添加值,返回一个一维数组

案例:

 
'''
     append(arr, values, axis=None) 函数:
         1、将元素值添加到数组的末尾,返回一个一维数组
         2、arr:输入的数组
         3、values:向 arr 数组中添加的值,需要和 arr 数组的形状保持一致
         4、axis:默认为 None,返回的是一维数组;当 axis =0 时,追加的值会被添加到行,而列数保持不变,若 axis=1 则与其恰好相反
 '''
 def append_test():
     array_one = np.arange(6).reshape(2,3)
     print('原数组:\n', array_one)
     array_two = np.append(array_one,[[1,1,1],[1,1,1]],axis=None)
     print('append 后数组 axis=None:\n', array_two)
     array_three = np.append(array_one, [[1, 1, 1], [1, 1, 1]], axis=0)
     print('append 后数组 axis=0:\n', array_three)
     array_three = np.append(array_one, [[1, 1, 1], [1, 1, 1]], axis=1)
     print('append 后数组 axis=1:\n', array_three)

7.3 insert

函数名称参数说明
insert(arr, obj, values, axis)arr:输入的数组 obj:表示索引值,在该索引值之前插入 values 值 values:要插入的值 axis:默认为 None,返回的是一维数组;当 axis =0 时,追加的值会被添加到行,而列数保持不变,若 axis=1 则与其恰好相反沿规定的轴将元素值插入到指定的元素前

案例:

 
import numpy as np
 ​
 def insert_test():
     array_one = np.arange(6).reshape(2,3)
     print('原数组:\n', array_one)
     array_two = np.insert(array_one, 1, [6],axis=None)
     print('insert 后数组 axis=None:\n', array_two)
     # 在索引为1的行插入[6],并自动广播
     array_three = np.insert(array_one,1, [6], axis=0)
     print('insert 后数组 axis=0:\n', array_three)
     # 在索引为1的列插入[6],并自动广播
     array_three = np.insert(array_one, 1, [6], axis=1)
     print('insert 后数组 axis=1:\n', array_three)
     
     array_three = np.insert(array_one, 1, [6,7], axis=1)
     print('insert 后数组 axis=1:\n', array_three)
     
     # 在列上插入数组的形状和原数组列的形状不一致
     # ValueError: could not broadcast input array from shape (3,1) into shape (2,1)
     array_three = np.insert(array_one, 1, [6,7,8], axis=1)
     print('insert 后数组 axis=1:\n', array_three)
如果obj为-1,表示插入在倒数第一个元素之前,不是在最后一列。

 array_three = np.insert(array_one, -1, [6,7], axis=1)
 print('insert 后数组 axis=1:\n', array_three)
 ​
 #输出:
  [[0 1 6 2]
  [3 4 7 5]]

7.4 delete

函数名称参数说明
delete(arr, obj, axis)arr:输入的数组 obj:表示索引值,要删除数据的索引 axis:默认为 None,返回的是一维数组;当 axis =0 时,删除指定的行,若 axis=1 则与其恰好相反删掉某个轴上的子数组,并返回删除后的新数组

案例:

一维数组:

 
import numpy as np
 ​
 # 创建一个 NumPy 数组
 arr = np.array([1, 2, 3, 4, 5, 6])
 ​
 # 删除索引为 2 和 4 的元素
 new_arr = np.delete(arr, [2, 4])
 ​
 print(new_arr)

二维数组:

 
import numpy as np
 ​
 ​
 def delete_test():
     array_one = np.arange(6).reshape(2,3)
     print('原数组:\n', array_one)
     array_two = np.delete(array_one,1,axis=None)
     print('delete 后数组 axis=None:\n', array_two)
     array_three = np.delete(array_one,1, axis=0)
     print('delete 后数组 axis=0:\n', array_three)
     array_three = np.delete(array_one, 1, axis=1)
     print('delete 后数组 axis=1:\n', array_three)

7.5 argwhere

返回数组中非 0 元素的索引,若是多维数组则返回行、列索引组成的索引坐标

案例:

 
import numpy as np
 ​
 '''
     argwhere(a) 函数:
         1、返回数组中非 0 元素的索引,若是多维数组则返回行、列索引组成的索引坐标
 '''
 def argwhere_test():
     array_one = np.arange(6).reshape(2,3)
     print('原数组:\n', array_one)
     print('argwhere 返回非0元素索引:\n', np.argwhere(array_one))
     print('argwhere 返回所有大于 1 的元素索引:\n', np.argwhere(array_one > 1))

7.6 unique

函数名称参数说明
unique(ar, return_index=False, return_inverse=False, return_counts=False, axis=None)ar:输入的数组 return_index:如果为 True,则返回新数组元素在原数组中的位置(索引) return_inverse:如果为 True,则返回原数组元素在新数组中的位置(逆索引) return_counts:如果为 True,则返回去重后的数组元素在原数组中出现的次数删掉某个轴上的子数组,并返回删除后的新数组

案例1:返回唯一元素的索引

 
import numpy as np
 ​
 # 创建一个 NumPy 数组
 arr = np.array([1, 2, 2, 3, 4, 4, 5])
 unique_elements, indices = np.unique(arr, return_index=True)
 print(unique_elements)
 print(indices)

案例2:返回唯一元素及其逆索引

 mport numpy as np
 ​
 # 创建一个一维数组
 arr = np.array([1, 2, 2, 3, 3, 3, 4, 4, 4, 4])
 ​
 # 使用 np.unique 查找唯一元素及其逆索引
 unique_elements, inverse_indices = np.unique(arr, return_inverse=True)
 ​
 print(unique_elements)
 # 输出:
 # [1 2 3 4]
 ​
 print(inverse_indices)
 # 输出:
 # [0 1 1 2 2 2 3 3 3 3]
 # 逆索引数组,表示原始数组中的每个元素在唯一元素数组中的位置。

案例3:返回唯一元素的计数

import numpy as np
 ​
 # 创建一个一维数组
 arr = np.array([1, 2, 2, 3, 3, 3, 4, 4, 4, 4])
 ​
 # 使用 np.unique 查找唯一元素及其计数
 unique_elements, counts = np.unique(arr, return_counts=True)
 ​
 print(unique_elements)
 # 输出:
 # [1 2 3 4]
 ​
 print(counts)
 # 输出:
 # [1 2 3 4]

对于多维数组,unique 函数同样适用。默认情况下,unique 函数会将多维数组展平为一维数组,然后查找唯一元素。

 arr = np.array([[1, 2], [2, 3], [1, 2]])
 ​
 # 查找数组中的唯一元素
 unique_elements = np.unique(arr)
 print(unique_elements)

 

 

8、统计函数

8.1 amin() 和 amax()

  • 计算数组沿指定轴的最小值与最大值,并以数组形式返回

  • 对于二维数组来说,axis=1 表示沿着水平方向,axis=0 表示沿着垂直方向

案例:

 '''
     numpy.amin() 和 numpy.amax() 函数:
         1、计算数组沿指定轴的最小值与最大值,并以数组形式返回
         2、对于二维数组来说,axis=1 表示沿着水平方向,axis=0 表示沿着垂直方向
 '''
 def amin_amax_test():
     array_one = np.array([[1,23,4,5,6],[1,2,333,4,5]])
     print('原数组元素:\n', array_one)
     print('原数组水平方向最小值:\n', np.amin(array_one, axis=1))
     print('原数组水平方向最大值:\n', np.amax(array_one, axis=1))
     print('原数组垂直方向最小值:\n', np.amin(array_one, axis=0))
     print('原数组垂直方向最大值:\n', np.amax(array_one, axis=0))
     输出:
 原数组元素:
  [[  1  23   4   5   6]
  [  1   2 333   4   5]]
 原数组水平方向最小值:
  [1 1]
 原数组水平方向最大值:
  [ 23 333]
 原数组垂直方向最小值:
  [1 2 4 4 5]
 原数组垂直方向最大值:
  [  1  23 333   5   6]

按1轴求最小值,表示在最内层轴中(每列中)分别找最小值;按1轴求最小值表示在最外层轴中(所有行中按列)找最小值。求最大值类似。

8.2 ptp()

  • 计算数组元素中最值之差值,即最大值 - 最小值

  • 对于二维数组来说,axis=1 表示沿着水平方向,axis=0 表示沿着垂直方向

 # 创建一个二维数组
 arr = np.array([[1, 2, 3], [4, 5, 6]])
 ​
 # 使用 np.ptp 计算峰峰值
 ptp_value = np.ptp(arr)
 ​
 print(ptp_value)
 # 输出:
 # 5
 ​
 # 使用 np.ptp 按行计算峰峰值
 ptp_values_row = np.ptp(arr, axis=1)
 ​
 # 使用 np.ptp 按列计算峰峰值
 ptp_values_col = np.ptp(arr, axis=0)
 ​
 print(ptp_values_row)
 # 输出:
 # [2 2]
 ​
 print(ptp_values_col)
 # 输出:
 # [3 3 3]

8.3 median()

用于计算中位数,中位数是指将数组中的数据按从小到大的顺序排列后,位于中间位置的值。如果数组的长度是偶数,则中位数是中间两个数的平均值。

 # 创建一个二维数组
 arr = np.array([[1, 2, 3], [4, 5, 6]])
 ​
 # 使用 np.median 计算中位数
 median_value = np.median(arr,axis=None)
 ​
 print(median_value)
 # 输出:
 # 3.5
 ​
 # 使用 np.median 按行计算中位数
 median_values_row = np.median(arr, axis=1)
 ​
 # 使用 np.median 按列计算中位数
 median_values_col = np.median(arr, axis=0)
 ​
 print(median_values_row)
 # 输出:
 # [2. 5.]
 ​
 print(median_values_col)
 # 输出:
 # [2.5 3.5 4.5]

8.4 mean()

沿指定的轴,计算数组中元素的算术平均值(即元素之总和除以元素数量)

 
# 创建一个一维数组
 arr = np.array([1, 2, 3, 4, 5])
 ​
 # 使用 np.mean 计算平均值
 mean_value = np.mean(arr)
 ​
 print(mean_value)
 # 输出:
 # 3.0
 ​
 ​
 # 创建一个二维数组
 arr = np.array([[1, 2, 3], [4, 5, 6]])
 ​
 # 使用 np.mean 计算平均值
 mean_value = np.mean(arr)
 ​
 print(mean_value)
 # 输出:
 # 3.5
 ​
 ​
 # 使用 np.mean 按行计算平均值
 mean_values_row = np.mean(arr, axis=1)
 ​
 # 使用 np.mean 按列计算平均值
 mean_values_col = np.mean(arr, axis=0)
 ​
 print(mean_values_row)
 # 输出:
 # [2. 5.]
 ​
 print(mean_values_col)
 # 输出:
 # [2.5 3.5 4.5]

8.5 average()

加权平均值是将数组中各数值乘以相应的权数,然后再对权重值求总和,最后以权重的总和除以总的单位数(即因子个数);根据在数组中给出的权重,计算数组元素的加权平均值。该函数可以接受一个轴参数 axis,如果未指定,则数组被展开为一维数组。


其中 xi是数组中的元素,wi是对应的权重。

如果所有元素的权重之和等于1,则表示为数学中的期望值。

 # 创建一个一维数组
     arr = np.array([1, 2, 3, 4, 5])
 ​
     # 创建权重数组
     weights = np.array([0.1, 0.2, 0.3, 0.2, 0.2])
 ​
     # 使用 np.average 计算加权平均值
     average_value = np.average(arr, weights=weights)
 ​
     print(average_value)
     # 输出:
     # 3.2

8.6 var()

在 NumPy 中,计算方差时使用的是统计学中的方差公式,而不是概率论中的方差公式,主要是因为 NumPy 的设计目标是处理实际数据集,而不是概率分布。

np.var 函数默认计算的是总体方差(Population Variance),而不是样本方差(Sample Variance)。

总体方差:

对于一个总体数据集 X={x1,x2,…,xN},总体方差的计算公式为:

其中:

  • N是总体数据点的总数。

  • μ是总体的均值。

 # 创建一个数组
 arr = np.array([1, 2, 3, 4, 5])
 ​
 # 计算方差
 variance = np.var(arr)
 ​
 print(variance)
 ​
 #输出:2

样本方差:

对于一个样本数据集 X={x1,x2,…,xn},样本方差 的计算公式为:

其中:

  • n是样本数据点的总数。

  • xˉ是样本的均值。

在样本数据中,样本均值的估计会引入一定的偏差。通过使用 n−1作为分母,可以校正这种偏差,得到更准确的总体方差估计。

 # 创建一个数组
 arr = np.array([1, 2, 3, 4, 5])
 ​
 # 计算方差
 variance = np.var(arr, ddof=1)
 ​
 print(variance)
 ​
 #输出:2.5

8.7 std()

标准差是方差的算术平方根,用来描述一组数据平均值的分散程度。若一组数据的标准差较大,说明大部分的数值和其平均值之间差异较大;若标准差较小,则代表这组数值比较接近平均值

 # 创建一个数组
 arr = np.array([1, 2, 3, 4, 5])
 ​
 # 计算标准差
 std_dev = np.std(arr)
 ​
 print(std_dev)
 ​
 # 输出:1.4142135623730951

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值