MapTracker:Tracking with Strided Memory Fusion for Consistent Vector HD Mapping

参考代码:MapTracker

动机与出发点

为了提升帧间检测的稳定性通常会添加时许信息,这个可以BEV特征处做时序融合,也可以是用当前帧query去cross-attn历史帧信息,则更多的时候是将之前帧信息与当前做融合或者cross-attn实现信息传递,是一种只在当前帧做检测的思路。这篇文章提出使用tracking的思路去做帧间融合,也就是历史帧的目标信息和匹配关系会随着时间流转到当前时刻,融合也是分为BEV特征和query维度的:

  • 1)BEV特征(BEV query)融合:将上一帧BEV特征通过egomotion变换到当前帧位置下用于当前帧query的初始化,没有重叠的区域就用原本embedding的值(default val),之后再与历史帧做跳帧融合,如使用距离当前ego距离为1m、5m、10m、15m处帧数据,这个融合的过程可以直接warp对齐之后做融合
  • 2)vector query融合:将上一帧object query做帧间对齐之后与当前帧的query做concat操作,再与历史帧的query做inst级别的cross-attn操作,这样就相当于历史帧中的query流转到了当前时刻(做数据的时候就要把跟踪关系做好,同一个clip用同一个实例ID就行),同时也有新定义query去处理新出现的目标

使用tracking的方式去做感知具有如下优势:

  • 1)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值