
Human Pose Estimation
人体姿态估计
m_buddy
大表哥,还有大招吗... PS:本人所有文章均免费公开,任何收费条目请咨询平台
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
《HigherHRNet:Scale-Aware Representation Learning for Bottom-Up Human Pose Estimation》论文笔记
参考代码:HigherHRNet1. 概述导读:在bottom-up类型的人体关键点检测算法中,人物目标密集和人物目标过小都是算法表现不好的场景,对此这篇文章从特征提取的角度,在HRNet的基础上(用HRNet的输出并使用trasnpose卷积进行上采样)引入特征金字塔优化关键点检测算法HigherHRNet,算法从高分辨的特征金字塔学习scale-aware表达(train的时候是scale-aware的,infer的时候是将heatmap融合预测的),因而这样对尺度带来的检测问题有了一定的优化。文原创 2020-09-18 23:31:21 · 1556 阅读 · 0 评论 -
《HRNet:Deep High-Resolution Representation Learning for Human Pose Estimation》论文笔记
参考代码:HRNet1. 概述导读:这篇文章聚焦人体关键点检测任务中高分辨率特征的学习表达,现有的特征表达方式一般采取分辨率从高到低的演化路径,这篇文章中为了保持高分辨率特征的作用(分辨率越高关键点定位自然越准确),在网络的pipeline中保持与原始输入尺寸一致的特征图,通过逐步添加低分辨率平行分支并与其它分辨率互连的形式构造一种新的特征提取方式。这样的方式带来的好处也是显而易见的,极大提升了文章在COCO与MPII人体关键点检测任务检测精度(直观感觉相应的内存/FLOPS会增加很多,实际上比较之后原创 2020-09-14 00:34:45 · 428 阅读 · 0 评论 -
《Real-time 2D Multi-Person Pose Estimation on CPU:Lightweight OpenPose》论文笔记
参考代码:lightweight-human-pose-estimation.pytorch1. 概述导读:这篇文章是在OpenPose的基础上进行轻量化改进,从而使得整体网络能在Intel的CPU上达到实时的运行效果。对此文章的算法也是相当轻量级的只有410w的参数90亿的浮点运算,是含有两阶段优化OpenPose的15%,但是其AP(Average Precision)只降低了1个点。自然文章对原有OpenPose进行了加多的改进,从而使其在速度上得到提升。2. 方法设计OpenPose是b原创 2020-08-24 00:20:53 · 1674 阅读 · 0 评论 -
《OpenPose:Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields》论文笔记
参考代码:openpose1. 概述导读:这篇文章提出了一种bottom-up的2D图像多人关键点(躯干/手脚/面部,使用掩膜控制训练整合数据集)检测算法,这样使得整体网络的运算时间并不与图像中人数呈现显著相关的关系。在这篇文章中提出了PAFs(Part Affinity Fileds)(用于去编码关键点的位置与方向信息),用于去建模每个部位之间的相互关系,并且文章发现同时去优化PAFs和人体的部位并不是最优的选择,先去优化PAFs而不是同时去优化它们两个能带来更好的性能表现。这篇文章的方法也是涵盖了原创 2020-08-09 00:34:03 · 530 阅读 · 0 评论