机器学习第二周打卡:分类评价+线性回归+拆分训练集和测试集方法

本文介绍了机器学习中分类评价的关键指标,如混淆矩阵、精准率、召回率和F1 Score,以及ROC曲线和AUC。接着讨论了线性回归的R2评分标准,并详细阐述了如何拆分训练集和测试集的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

分类评价结果

我们使用分类算法将训练集进行分类后,我们怎么判定分类算法的好坏,就需要用到相关指标。

混淆矩阵
使用条件:对于极度偏斜的数据,是不能使用混淆矩阵的。比如99.9%的人都会患癌症等。
在这里插入图片描述
其中,
精准率=TP/(FP+TP),即预测值里面,准确的数据占比是多少。
召回率=TP/(FN+TP),即真实值里面,准确被预测的数据占比是多少。
那接下来的问题,两个指标中,在某个模型中,达到什么样的数据才是最好的?有没有可能混合成一个指标=两个指标的加权数值?
这种的话,就需要看需求进行评判了,当然能也有混合成一个指标的指标,即F1 SCORE,
在这里插入图片描述
sklearn调用方法:

from sklearn.metrics import confusion_matrix
confusion_matrix
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值