[数据分析基础] 2. Matplotlib库
一、Matplotlib库入门
Matplotlib库由各种可视化类构成,内部结构复杂,受Matlab启发。
matplotlib.pyplot
是绘制各类可视化图形的命令子库,相当于快捷方式。
import matplotlib.pyplot as plt
←引入模块的别名
plt.plot()
只有一个输入列表或数组时,参数被当作Y轴,X轴以索引自动生成
plt.savefig()
将输出图形存储为文件,默认PNG格式,可以通过dpi修改输出质量
plt.plot(x,y)
当有两个以上参数时,按照X轴和Y轴顺序绘制数据点。
import numpy as np
import matplotlib.pyplot as plt #引入模块
plt.plot([0,2,4,6,8],[3,1,4,5,2])
plt.ylabel('Grade')
plt.axis([-1,10,0,6]) #指x轴坐标起始于-1,终止于10. y轴坐标起始于0终止于6
plt.savefig('test',dpi=600) #默认输出PNG文件 dpi表示每一英寸包含点的数量,可通过dpi修改输出质量
plt.show()
1. pyplot的绘图区域
plt.subplot(nrows,ncols,plot_number)
subplot将一个绘制区域分割成了以第一个参数为横轴数量,以第二个参数为纵轴数量的子区域。plot_number为当前绘图在哪个区。即在全局绘图区域中创建一个分区体系,并定位到一个子绘图区域。
>>> plt.subplot(3,2,4) #将一块区域分成3行2列六块区域,从第四块区域开始绘图
#或者直接plt.subplot(324)
import numpy as np
import matplotlib.pyplot as plt
def f(t):
return np.exp(-t)*np.cos(2*np.pi*t)
a=np.arange(0.0,5.0,0.02)
plt.subplot(211)
plt.plot(a,f(a))
plt.subplot(2,1,2) #','可省略
plt.plot(a,np.cos(2*np.pi*a),'r--')
plt.show()
2. pyplot的plot()函数
plt.plot(x, y, format_string, **kwargs)
可以同时绘制多条曲线
-
x : X轴数据,列表或数组,可选
-
y : Y轴数据,列表或数组
-
format_string: 控制曲线的格式字符串,可选
-
**kwargs : 第二组或更多(x,y,format_string)
当绘制多条曲线时,各条曲线的x不能省略
import matplotlib.pyplot as plt
import numpy as np
a=np.arange(10)
plt.plot(a,a*1.5,a,a*2.5,a,a*3.5,a,a*4.5)
plt.show()
format_string
format_string:是控制曲线的格式字符串,可选 。由颜色字符、风格字符和标记字符组成
颜色字符 | 说明 | 颜色字符 | 说明 |
---|---|---|---|
‘b’ | 蓝色 | ‘m’ | 洋红色 magenta |
‘g’ | 绿色 | ‘y’ | 黄色 |
‘r’ | 红色 | ‘k’ | 黑色 |
‘c’ | 青绿色 cyan | ‘w’ | 白色 |
‘#008000’ | RGB某颜色 | ‘0.8’ | 灰度值字符串 |
风格字符 | 说明 |
---|---|
’ ‐ ’ | 实线 |
’ ‐‐ ’ | 破折线 |
’ ‐.’ | 点划线 |
‘:’ | 虚线 |
‘’ 或 ’ ’ | 无线条 |
标记字符 | 说明 | 标记字符 | 说明 | 标记字符 | 说明 |
---|---|---|---|---|---|
‘.’ | 点标记 | ‘1’ | 下花三角标记 | ‘h’ | 竖六边形标记 |
‘,’ | 像素标记(极小点) | ‘2’ | 上花三角标记 | ‘H’ | 横六边形标记 |
‘o’ | 实心圈标记 | ‘3’ | 左花三角标记 | ‘+’ | 十字标记 |
‘v’ | 倒三角标记 | ‘4’ | 右花三角标记 | ‘x’ | x标记 |
‘^’ | 上三角标记 | ‘s’ | 实心方形标记 | ‘D’ | 菱形标记 |
‘>’ | 右三角标记 | ‘p’ | 实心五角标记 | ‘d’ | 瘦菱形标记 |
‘<’ | 左三角标记 | ‘*’ | 星形标记 | ’ | ’ |
import matplotlib.pyplot as plt
import numpy as np
a=np.arange(10)
plt.plot(a,a*1.5,'go-',a,a*2.5,'rx',a,a*3.5,'*',a,a*4.5,'b-.')
plt.show()
颜色字符、风格字符和标记字符可以组合使用
**kwargs
**kwargs
指第二组或更多(x,y,format_string)
color
: 控制颜色, color=‘green’
linestyle
: 线条风格, linestyle=‘dashed’
marker
: 标记风格, marker=‘o’
markerfacecolor
: 标记颜色,markerfacecolor=‘blue’
markersize
: 标记尺寸, markersize=20
3. pyplot的中文显示
方法一 rcParams修改字体
pyplot并不默认支持中文显示,需要rcParams修改字体实现。这种方法会使坐标轴中数字的字体等也随之改变
import matplotlib.pyplot as plt
import matplotlib
import numpy as np
matplotlib.rcParams['font.family']='SimHei'#SimHei是黑体
plt.plot([3,1,4,5,2])
plt.ylabel("纵轴(值)")
plt.savefig('test',dpi=600)
plt.show()
rcParams的属性 | 说明 |
---|---|
'font.family' | 用于显示字体的名字 |
'font.style' | 字体风格,正常’normal’或 斜体’italic’ |
'font.size' | 字体大小,整数字号或者’large’、‘x‐small’ |
中文字体的种类 | 说明 |
---|---|
‘SimHei’ | 中文黑体 |
‘Kaiti’ | 中文楷体 |
‘LiSu’ | 中文隶书 |
‘FangSong’ | 中文仿宋 |
‘YouYuan’ | 中文幼圆 |
‘STSong’ | 华文宋体 |
方法二 增加属性fontproperties
在有中文输出的地方,增加一个属性:fontproperties.这种方法能有效的在特定需要输入中文地方确定中文的字体和字号。
import matplotlib.pyplot as plt
import matplotlib
import numpy as np
a=np.arange(0.0,5.0,0.02)
plt.xlabel('横轴:时间',fontproperties='SimHei',fontsize=20)
plt.ylabel('纵轴:振幅',fontproperties='SimHei',fontsize=20)
plt.plot(a,np.cos(2*np.pi*a),'r--')
plt.show()
4. pyplot的文本显示函数
函数 | 说明 |
---|---|
plt.xlabel() | 对X轴增加文本标签 |
plt.ylabel() | 对Y轴增加文本标签 |
plt.title() | 对图形整体增加文本标签 |
plt.text() | 在任意位置增加文本 |
plt.annotate() | 在图形中增加带箭头的注解 |
import matplotlib.pyplot as plt
import numpy as np
a=np.arange(0.0,5.0,0.02)
plt.plot(a,np.cos(2*np.pi*a),'r--')
plt.xlabel('横轴:时间',fontproperties='SimHei',fontsize=15,color='green')
plt.ylabel('纵轴:振幅',fontproperties='SimHei',fontsize=15)
plt.title(r'正弦波实例$y=cos(2\pi x)$',fontproperties='SimHei',fontsize=25) #latex语法
plt.text(2,1,r'$\mu=100$',fontsize=15) #增加文本,显示在横轴为2,纵轴为1的地方
plt.axis([-1,6,-2,2]) #限定横纵轴取值范围
plt.grid(True) #添加网格
plt.show()
plt.annotate(s,xy=arrow_crd,xytext=text_crd,arrowprops=dict)
- s: 要注解的字符串
- xy:箭头所在的位置
- xy_text:表示文本显示的位置
- arrowprops:是一个字典类型,定义了整个箭头的一些属性
import matplotlib.pyplot as plt
import numpy as np
a=np.arange(0.0,5.0,0.02)
plt.plot(a,np.cos(2*np.pi*a),'r--')
plt.xlabel('横轴:时间',fontproperties='SimHei',fontsize=15,color='green')
plt.ylabel('纵轴:振幅',fontproperties='SimHei',fontsize=15)
plt.title(r'正弦波实例$y=cos(2\pi x)$',fontproperties='SimHei',fontsize=25)
plt.annotate(r'$\mu=100$',xy=(2,1),xytext=(3,1.5),
arrowprops=dict(facecolor='black',shrink=0.1,width=2)) #字典形式定义相关属性
plt.axis([-1,6,-2,2])
plt.grid(True)
plt.show()
5. pyplot的子绘图区域
plt.subplot2grid(GridSpec, CurSpec, colspan=1, rowspan=1)
理念:设定网格,选中网格,确定选中行列区域数量,编号从0开始
如 plt.subplot2grid((3,3),(1,0),colspan=2)
,(3,3)把一个区域分成3行3列,(1,0)表示选取第一行第0列,colspan=2表示在列的方向占用长度为2的区域。
plt.subplot2grid((3,3),(0,0),colspan=3) #选中区域1
plt.subplot2grid((3,3),(1,0),colspan=2) #区域2
plt.subplot2grid((3,3),(1,2),rowspan=2) #区域3
plt.subplot2grid((3,3),(2,0))
plt.subplot2grid((3,3),(2,1))
这个方法每次调用都要重新对图形的设计做一个约束,可以用GradSpec类来简化其中的设计
import matplotlib.gridspec as gridspec
import matplotlib.pyplot as plt
gs=gridspec.GridSpec(3,3) #设计一个三行三列的网格
ax1=plt.subplot(gs[0,:]) #横向上选中第0行,纵向选择所有列
ax2=plt.subplot(gs[1,:-1])
ax3=plt.subplot(gs[1:,-1])
ax4=plt.subplot(gs[2,0])
ax5=plt.subplot(gs[2,1])
二、Matplotlib基础绘图函数
函数 | 说明 |
---|---|
plt.plot(x,y,fmt,…) | 绘制一个坐标图 |
plt.boxplot(data,notch,position) | 绘制一个箱形图 |
plt.bar(left,height,width,bottom) | 绘制一个条形图 |
plt.barh(width,bottom,left,height) | 绘制一个横向条形图 |
plt.polar(theta, r) | 绘制极坐标图 |
plt.pie(data, explode) | 绘制饼图 |
plt.psd(x,NFFT=256,pad_to,Fs) | 绘制功率谱密度图 |
plt.specgram(x,NFFT=256,pad_to,F) | 绘制谱图 |
plt.cohere(x,y,NFFT=256,Fs) | 绘制X‐Y的相关性函数 |
plt.scatter(x,y) | 绘制散点图,其中,x和y长度相同 |
plt.step(x,y,where) | 绘制步阶图 |
plt.hist(x,bins,normed) | 绘制直方图 |
plt.contour(X,Y,Z,N) | 绘制等值图 |
plt.vlines() | 绘制垂直图 |
plt.stem(x,y,linefmt,markerfmt) | 绘制柴火图 |
plt.plot_date() | 绘制数据日期 |
1. pyplot饼图的绘制
plt.pie()
显示正圆形饼图 plt.axis('equal')
表示x,y方向尺寸相等
import matplotlib.gridspec as gridspec
import matplotlib.pyplot as plt
labels='Frogs','Hogs','Dogs','Logs'
sizes=[15,30,45,10]
explode=(0,0.1,0,0) #表示突出比例
#autopct=表示显示百分数方式,shadow表示是否带有阴影,startangle表示起始角度
plt.pie(sizes,explode=explode,labels=labels,autopct='%1.1f%%',shadow=False,startangle=90)
plt.axis('equal') #表示x,y方向尺寸相等
plt.show()
2. pyplot直方图的绘制
plt.hist()
import numpy as np
import matplotlib.pyplot as plt
np.random.seed(0) #随机数种子0
mu,sigma=100,20 #设置均值和方差
a=np.random.normal(mu,sigma,size=100) #生成数组a,元素符合给定均值方差的正态分布函数
plt.hist(a,20,normed=1,histtype='stepfilled',facecolor='b',alpha=0.75) #20表示生成20个直方图
plt.title('Histogram') #标题信息
plt.show()
import numpy as np
import matplotlib.pyplot as plt
np.random.seed(0)
mu,sigma=100,20
a=np.random.normal(mu,sigma,size=100)
# normed=1是归一化,normed=0是大小
plt.hist(a,40,normed=0,histtype='stepfilled',facecolor='b',alpha=0.75) #生成40个直方图
plt.title('Histogram')
plt.show()
3. pyplot极坐标图的绘制
import numpy as np
import matplotlib.pyplot as plt
N=20 #数据个数
theta=np.linspace(0.0,2*np.pi,N,endpoint=False) #从0到2pi等分出N个角度
radii=10*np.random.rand(N) #生成每个角度对应的值
width=np.pi/4*np.random.rand(N)
ax=plt.subplot(111,projection='polar')
bars=ax.bar(theta,radii,width=width,bottom=0.0) #输入极坐标的三个参数,位置,长度,宽度,绘制极坐标值
for r,bar in zip(radii,bars):
bar.set_facecolor(plt.cm.viridis(r/10.))
bar.set_alpha(0.5)
plt.show()
4. pyplot散点图的绘制
import matplotlib.pyplot as plt
import numpy as np
#面向对象方式绘制散点图
fig,ax=plt.subplots() #将subplots()变成一个对象,subplots()缺省111
ax.plot(10*np.random.randn(100),10*np.random.randn(100),'o')
ax.set_title('Simple Scatter')
plt.show()
三、实例:引力波的绘制
要用到的库有科学计算库numpy
,绘图库matplotlib.pyplot
,读取波形文件库scipy.io
第一步 产生时间序列
-
从配置文中读取时间相关数据
#wavfile用来读取音频文件,当文件名中有\等转义字符时,前面加上r表示显示原始字符串。#分别赋值给速率rate和数据strain rate_h, hstrain= wavfile.read(r"H1_Strain.wav","rb") rate_l, lstrain= wavfile.read(r"L1_Strain.wav","rb") #reftime为时间序列, ref_H1为数据, #np.genfromtxt()先将文件每一行转为字符串序列,然后将每个字符串序列转化为相应数据类型,结果为2行的矩阵 #transpose进行矩阵转置 reftime, ref_H1 = np.genfromtxt('GW150914_4_NR_waveform_template.txt').transpose()
-
读取应变数据
htime_interval = 1./rate_h # 对rate变量求倒数得到波形时间间隔 ltime_interval = 1./rate_l #shape[0]表示strain矩阵的第一维长度,即数据点的个数,除以rate得到函数在坐标轴的总长度 htime_len = hstrain.shape[0]/rate_h #想绘制出以原点为中心对称的图像,起点为-htime_len/2,终点为htime_len/2,时间间隔为htime_interval,得出时间序列htime htime = np.arange(-htime_len/2, htime_len/2 , htime_interval) ltime_len = lstrain.shape[0]/rate_l ltime = np.arange(-ltime_len/2, ltime_len/2 , ltime_interval)
第二步 绘制H1 Strain
#创建一个大小为12*6的绘图空间
fig = plt.figure(figsize=(12, 6))
#将窗口划分为2*2的子区域,在第一个区域绘制图片
plth = fig.add_subplot(221)
#参数含义分别为 横坐标的取值序列,纵坐标的取值序列,y表示使用黄色
plth.plot(htime, hstrain, 'y')
plth.set_xlabel('Time (seconds)')
plth.set_ylabel('H1 Strain')
plth.set_title('H1 Strain')
然后以完全形同的方法绘制另外两幅图像,分别放在绘图区域的第一列右边和第二列
第三步 显示并保存图像
fig.tight_layout() #自动调整图像外部边缘
plt.savefig("Gravitational_Waves_Original.png")
plt.show()
plt.close(fig)
总代码
import numpy as np
import matplotlib.pyplot as plt
from scipy.io import wavfile
rate_h, hstrain= wavfile.read(r"H1_Strain.wav","rb")
rate_l, lstrain= wavfile.read(r"L1_Strain.wav","rb")
#reftime, ref_H1 = np.genfromtxt('GW150914_4_NR_waveform_template.txt').transpose()
reftime, ref_H1 = np.genfromtxt('wf_template.txt').transpose() #ʹÓÃpython123.ioÏÂÔØÎļþ
htime_interval = 1./rate_h
ltime_interval = 1./rate_l
fig = plt.figure(figsize=(12, 6))
htime_len = hstrain.shape[0]/rate_h
htime = np.arange(-htime_len/2, htime_len/2 , htime_interval)
plth = fig.add_subplot(221)
plth.plot(htime, hstrain, 'y')
plth.set_xlabel('Time (seconds)')
plth.set_ylabel('H1 Strain')
plth.set_title('H1 Strain')
ltime_len = lstrain.shape[0]/rate_l
ltime = np.arange(-ltime_len/2, ltime_len/2 , ltime_interval)
pltl = fig.add_subplot(222)
pltl.plot(ltime, lstrain, 'g')
pltl.set_xlabel('Time (seconds)')
pltl.set_ylabel('L1 Strain')
pltl.set_title('L1 Strain')
pltref = fig.add_subplot(212)
pltref.plot(reftime, ref_H1)
pltref.set_xlabel('Time (seconds)')
pltref.set_ylabel('Template Strain')
pltref.set_title('Template')
fig.tight_layout()
plt.savefig("Gravitational_Waves_Original.png")
plt.show()
plt.close(fig)