[数据分析基础] 2. Matplotlib库

本文深入探讨了Matplotlib库的基本使用方法,包括绘图区域、plot函数、中文显示、文本显示及子绘图区域的设置。同时,介绍了基础绘图函数如饼图、直方图、极坐标图和散点图的绘制技巧。最后,通过引力波数据的实例展示了如何综合运用这些技能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

[数据分析基础] 2. Matplotlib库

一、Matplotlib库入门

Matplotlib库由各种可视化类构成,内部结构复杂,受Matlab启发。
matplotlib.pyplot是绘制各类可视化图形的命令子库,相当于快捷方式。

import matplotlib.pyplot as plt ←引入模块的别名

plt.plot()只有一个输入列表或数组时,参数被当作Y轴,X轴以索引自动生成

plt.savefig()将输出图形存储为文件,默认PNG格式,可以通过dpi修改输出质量

plt.plot(x,y)当有两个以上参数时,按照X轴和Y轴顺序绘制数据点。

import numpy as np
import matplotlib.pyplot as plt   #引入模块

plt.plot([0,2,4,6,8],[3,1,4,5,2])
plt.ylabel('Grade')
plt.axis([-1,10,0,6])   #指x轴坐标起始于-1,终止于10. y轴坐标起始于0终止于6
plt.savefig('test',dpi=600) #默认输出PNG文件  dpi表示每一英寸包含点的数量,可通过dpi修改输出质量
plt.show()

在这里插入图片描述

1. pyplot的绘图区域

plt.subplot(nrows,ncols,plot_number) subplot将一个绘制区域分割成了以第一个参数为横轴数量,以第二个参数为纵轴数量的子区域。plot_number为当前绘图在哪个区。即在全局绘图区域中创建一个分区体系,并定位到一个子绘图区域。

>>> plt.subplot(3,2,4) #将一块区域分成3行2列六块区域,从第四块区域开始绘图
#或者直接plt.subplot(324)

在这里插入图片描述

import numpy as np
import matplotlib.pyplot as plt
def f(t):
    return np.exp(-t)*np.cos(2*np.pi*t)

a=np.arange(0.0,5.0,0.02)
plt.subplot(211)
plt.plot(a,f(a))

plt.subplot(2,1,2) #','可省略
plt.plot(a,np.cos(2*np.pi*a),'r--')
plt.show()

在这里插入图片描述

2. pyplot的plot()函数

plt.plot(x, y, format_string, **kwargs) 可以同时绘制多条曲线

  • x : X轴数据,列表或数组,可选

  • y : Y轴数据,列表或数组

  • format_string: 控制曲线的格式字符串,可选

  • **kwargs : 第二组或更多(x,y,format_string)

当绘制多条曲线时,各条曲线的x不能省略

import matplotlib.pyplot as plt
import numpy as np
 
a=np.arange(10)
plt.plot(a,a*1.5,a,a*2.5,a,a*3.5,a,a*4.5)
plt.show()

在这里插入图片描述

format_string

format_string:是控制曲线的格式字符串,可选 。由颜色字符、风格字符和标记字符组成

颜色字符说明颜色字符说明
‘b’蓝色‘m’洋红色 magenta
‘g’绿色‘y’黄色
‘r’红色‘k’黑色
‘c’青绿色 cyan‘w’白色
‘#008000’RGB某颜色‘0.8’灰度值字符串
风格字符说明
’ ‐ ’实线
’ ‐‐ ’破折线
’ ‐.’点划线
‘:’虚线
‘’ 或 ’ ’无线条
标记字符说明标记字符说明标记字符说明
‘.’点标记‘1’下花三角标记‘h’竖六边形标记
‘,’像素标记(极小点)‘2’上花三角标记‘H’横六边形标记
‘o’实心圈标记‘3’左花三角标记‘+’十字标记
‘v’倒三角标记‘4’右花三角标记‘x’x标记
‘^’上三角标记‘s’实心方形标记‘D’菱形标记
‘>’右三角标记‘p’实心五角标记‘d’瘦菱形标记
‘<’左三角标记‘*’星形标记
import matplotlib.pyplot as plt
import numpy as np
 
a=np.arange(10)
plt.plot(a,a*1.5,'go-',a,a*2.5,'rx',a,a*3.5,'*',a,a*4.5,'b-.')
plt.show()

在这里插入图片描述
颜色字符、风格字符和标记字符可以组合使用

**kwargs

**kwargs 指第二组或更多(x,y,format_string)

color : 控制颜色, color=‘green’

linestyle : 线条风格, linestyle=‘dashed’

marker : 标记风格, marker=‘o’

markerfacecolor: 标记颜色,markerfacecolor=‘blue’

markersize : 标记尺寸, markersize=20

3. pyplot的中文显示
方法一 rcParams修改字体

pyplot并不默认支持中文显示,需要rcParams修改字体实现。这种方法会使坐标轴中数字的字体等也随之改变

import matplotlib.pyplot as plt
import matplotlib
import numpy as np
 
matplotlib.rcParams['font.family']='SimHei'#SimHei是黑体
plt.plot([3,1,4,5,2])
plt.ylabel("纵轴(值)")
plt.savefig('test',dpi=600)
plt.show()

在这里插入图片描述

rcParams的属性说明
'font.family'用于显示字体的名字
'font.style'字体风格,正常’normal’或 斜体’italic’
'font.size'字体大小,整数字号或者’large’、‘x‐small’
中文字体的种类说明
‘SimHei’中文黑体
‘Kaiti’中文楷体
‘LiSu’中文隶书
‘FangSong’中文仿宋
‘YouYuan’中文幼圆
‘STSong’华文宋体
方法二 增加属性fontproperties

在有中文输出的地方,增加一个属性:fontproperties.这种方法能有效的在特定需要输入中文地方确定中文的字体和字号。

import matplotlib.pyplot as plt
import matplotlib
import numpy as np
 
a=np.arange(0.0,5.0,0.02)
 
plt.xlabel('横轴:时间',fontproperties='SimHei',fontsize=20)
plt.ylabel('纵轴:振幅',fontproperties='SimHei',fontsize=20)
plt.plot(a,np.cos(2*np.pi*a),'r--')
plt.show()

在这里插入图片描述

4. pyplot的文本显示函数
函数说明
plt.xlabel()对X轴增加文本标签
plt.ylabel()对Y轴增加文本标签
plt.title()对图形整体增加文本标签
plt.text()在任意位置增加文本
plt.annotate()在图形中增加带箭头的注解
import matplotlib.pyplot as plt
import numpy as np
 
a=np.arange(0.0,5.0,0.02)
plt.plot(a,np.cos(2*np.pi*a),'r--')
 
plt.xlabel('横轴:时间',fontproperties='SimHei',fontsize=15,color='green')
plt.ylabel('纵轴:振幅',fontproperties='SimHei',fontsize=15)
plt.title(r'正弦波实例$y=cos(2\pi x)$',fontproperties='SimHei',fontsize=25) #latex语法
plt.text(2,1,r'$\mu=100$',fontsize=15) #增加文本,显示在横轴为2,纵轴为1的地方
 
plt.axis([-1,6,-2,2]) #限定横纵轴取值范围
plt.grid(True) #添加网格
plt.show()

在这里插入图片描述
plt.annotate(s,xy=arrow_crd,xytext=text_crd,arrowprops=dict)

  • s: 要注解的字符串
  • xy:箭头所在的位置
  • xy_text:表示文本显示的位置
  • arrowprops:是一个字典类型,定义了整个箭头的一些属性
import matplotlib.pyplot as plt
import numpy as np
 
a=np.arange(0.0,5.0,0.02)
plt.plot(a,np.cos(2*np.pi*a),'r--')
 
plt.xlabel('横轴:时间',fontproperties='SimHei',fontsize=15,color='green')
plt.ylabel('纵轴:振幅',fontproperties='SimHei',fontsize=15)
plt.title(r'正弦波实例$y=cos(2\pi x)$',fontproperties='SimHei',fontsize=25)
plt.annotate(r'$\mu=100$',xy=(2,1),xytext=(3,1.5),
             arrowprops=dict(facecolor='black',shrink=0.1,width=2)) #字典形式定义相关属性
 
plt.axis([-1,6,-2,2])
plt.grid(True)
plt.show()

在这里插入图片描述

5. pyplot的子绘图区域

plt.subplot2grid(GridSpec, CurSpec, colspan=1, rowspan=1)
理念:设定网格,选中网格,确定选中行列区域数量,编号从0开始

plt.subplot2grid((3,3),(1,0),colspan=2),(3,3)把一个区域分成3行3列,(1,0)表示选取第一行第0列,colspan=2表示在列的方向占用长度为2的区域。

plt.subplot2grid((3,3),(0,0),colspan=3) #选中区域1
plt.subplot2grid((3,3),(1,0),colspan=2) #区域2
plt.subplot2grid((3,3),(1,2),rowspan=2) #区域3
plt.subplot2grid((3,3),(2,0))
plt.subplot2grid((3,3),(2,1))

在这里插入图片描述
这个方法每次调用都要重新对图形的设计做一个约束,可以用GradSpec类来简化其中的设计

import matplotlib.gridspec as gridspec
import matplotlib.pyplot as plt
 
gs=gridspec.GridSpec(3,3) #设计一个三行三列的网格
 
ax1=plt.subplot(gs[0,:]) #横向上选中第0行,纵向选择所有列
ax2=plt.subplot(gs[1,:-1])
ax3=plt.subplot(gs[1:,-1])
ax4=plt.subplot(gs[2,0])
ax5=plt.subplot(gs[2,1])

在这里插入图片描述

二、Matplotlib基础绘图函数
函数说明
plt.plot(x,y,fmt,…)绘制一个坐标图
plt.boxplot(data,notch,position)绘制一个箱形图
plt.bar(left,height,width,bottom)绘制一个条形图
plt.barh(width,bottom,left,height)绘制一个横向条形图
plt.polar(theta, r)绘制极坐标图
plt.pie(data, explode)绘制饼图
plt.psd(x,NFFT=256,pad_to,Fs)绘制功率谱密度图
plt.specgram(x,NFFT=256,pad_to,F)绘制谱图
plt.cohere(x,y,NFFT=256,Fs)绘制X‐Y的相关性函数
plt.scatter(x,y)绘制散点图,其中,x和y长度相同
plt.step(x,y,where)绘制步阶图
plt.hist(x,bins,normed)绘制直方图
plt.contour(X,Y,Z,N)绘制等值图
plt.vlines()绘制垂直图
plt.stem(x,y,linefmt,markerfmt)绘制柴火图
plt.plot_date()绘制数据日期
1. pyplot饼图的绘制

plt.pie()
显示正圆形饼图 plt.axis('equal')表示x,y方向尺寸相等

import matplotlib.gridspec as gridspec
import matplotlib.pyplot as plt
 
labels='Frogs','Hogs','Dogs','Logs'
sizes=[15,30,45,10]
explode=(0,0.1,0,0) #表示突出比例
#autopct=表示显示百分数方式,shadow表示是否带有阴影,startangle表示起始角度
plt.pie(sizes,explode=explode,labels=labels,autopct='%1.1f%%',shadow=False,startangle=90) 
plt.axis('equal') #表示x,y方向尺寸相等
plt.show()

在这里插入图片描述

2. pyplot直方图的绘制

plt.hist()

import numpy as np
import matplotlib.pyplot as plt
 
np.random.seed(0) #随机数种子0
mu,sigma=100,20 #设置均值和方差
a=np.random.normal(mu,sigma,size=100) #生成数组a,元素符合给定均值方差的正态分布函数
 
plt.hist(a,20,normed=1,histtype='stepfilled',facecolor='b',alpha=0.75) #20表示生成20个直方图
plt.title('Histogram') #标题信息
 
plt.show()

在这里插入图片描述

import numpy as np
import matplotlib.pyplot as plt
 
np.random.seed(0)
mu,sigma=100,20
a=np.random.normal(mu,sigma,size=100)
# normed=1是归一化,normed=0是大小
plt.hist(a,40,normed=0,histtype='stepfilled',facecolor='b',alpha=0.75) #生成40个直方图
plt.title('Histogram')
 
plt.show()

在这里插入图片描述

3. pyplot极坐标图的绘制
import numpy as np
import matplotlib.pyplot as plt
 
N=20 #数据个数
theta=np.linspace(0.0,2*np.pi,N,endpoint=False) #从0到2pi等分出N个角度
radii=10*np.random.rand(N) #生成每个角度对应的值
width=np.pi/4*np.random.rand(N) 
 
ax=plt.subplot(111,projection='polar')  
bars=ax.bar(theta,radii,width=width,bottom=0.0) #输入极坐标的三个参数,位置,长度,宽度,绘制极坐标值
 
for r,bar in zip(radii,bars):
    bar.set_facecolor(plt.cm.viridis(r/10.))
    bar.set_alpha(0.5)
 
plt.show()

在这里插入图片描述

4. pyplot散点图的绘制
import matplotlib.pyplot as plt
import numpy as np

#面向对象方式绘制散点图
fig,ax=plt.subplots() #将subplots()变成一个对象,subplots()缺省111
ax.plot(10*np.random.randn(100),10*np.random.randn(100),'o')
ax.set_title('Simple Scatter')
plt.show()

在这里插入图片描述

三、实例:引力波的绘制

要用到的库有科学计算库numpy,绘图库matplotlib.pyplot,读取波形文件库scipy.io

第一步 产生时间序列
  1. 从配置文中读取时间相关数据

    #wavfile用来读取音频文件,当文件名中有\等转义字符时,前面加上r表示显示原始字符串。#分别赋值给速率rate和数据strain
    rate_h, hstrain= wavfile.read(r"H1_Strain.wav","rb") 
    rate_l, lstrain= wavfile.read(r"L1_Strain.wav","rb")
    #reftime为时间序列, ref_H1为数据,
    #np.genfromtxt()先将文件每一行转为字符串序列,然后将每个字符串序列转化为相应数据类型,结果为2行的矩阵
    #transpose进行矩阵转置
    reftime, ref_H1 = np.genfromtxt('GW150914_4_NR_waveform_template.txt').transpose()
    
  2. 读取应变数据

    htime_interval = 1./rate_h # 对rate变量求倒数得到波形时间间隔
    ltime_interval = 1./rate_l
    #shape[0]表示strain矩阵的第一维长度,即数据点的个数,除以rate得到函数在坐标轴的总长度
    htime_len = hstrain.shape[0]/rate_h 
    #想绘制出以原点为中心对称的图像,起点为-htime_len/2,终点为htime_len/2,时间间隔为htime_interval,得出时间序列htime
    htime = np.arange(-htime_len/2, htime_len/2 , htime_interval)
    ltime_len = lstrain.shape[0]/rate_l
    ltime = np.arange(-ltime_len/2, ltime_len/2 , ltime_interval)
    
第二步 绘制H1 Strain
#创建一个大小为12*6的绘图空间
fig = plt.figure(figsize=(12, 6))
#将窗口划分为2*2的子区域,在第一个区域绘制图片
plth = fig.add_subplot(221)
#参数含义分别为 横坐标的取值序列,纵坐标的取值序列,y表示使用黄色
plth.plot(htime, hstrain, 'y')
plth.set_xlabel('Time (seconds)')
plth.set_ylabel('H1 Strain')
plth.set_title('H1 Strain')

然后以完全形同的方法绘制另外两幅图像,分别放在绘图区域的第一列右边和第二列

第三步 显示并保存图像
fig.tight_layout() #自动调整图像外部边缘

plt.savefig("Gravitational_Waves_Original.png")
plt.show()
plt.close(fig)

总代码

import numpy as np
import matplotlib.pyplot as plt
from scipy.io import wavfile 

rate_h, hstrain= wavfile.read(r"H1_Strain.wav","rb")
rate_l, lstrain= wavfile.read(r"L1_Strain.wav","rb")
#reftime, ref_H1 = np.genfromtxt('GW150914_4_NR_waveform_template.txt').transpose()
reftime, ref_H1 = np.genfromtxt('wf_template.txt').transpose() #ʹÓÃpython123.ioÏÂÔØÎļþ

htime_interval = 1./rate_h
ltime_interval = 1./rate_l
fig = plt.figure(figsize=(12, 6))


htime_len = hstrain.shape[0]/rate_h
htime = np.arange(-htime_len/2, htime_len/2 , htime_interval)
plth = fig.add_subplot(221)
plth.plot(htime, hstrain, 'y')
plth.set_xlabel('Time (seconds)')
plth.set_ylabel('H1 Strain')
plth.set_title('H1 Strain')

ltime_len = lstrain.shape[0]/rate_l
ltime = np.arange(-ltime_len/2, ltime_len/2 , ltime_interval)
pltl = fig.add_subplot(222)
pltl.plot(ltime, lstrain, 'g')
pltl.set_xlabel('Time (seconds)')
pltl.set_ylabel('L1 Strain')
pltl.set_title('L1 Strain')

pltref = fig.add_subplot(212)
pltref.plot(reftime, ref_H1)
pltref.set_xlabel('Time (seconds)')
pltref.set_ylabel('Template Strain')
pltref.set_title('Template')
fig.tight_layout()

plt.savefig("Gravitational_Waves_Original.png")
plt.show()
plt.close(fig)

在这里插入图片描述

NumPy和Matplotlib是Python中两个非常重要的,广泛应用于科学计算、数据分析和可视化。 ### NumPy NumPy(Numeric Python)是一个用于处理数组的强大的Python。它提供了支持大型多维数组和矩阵的功能,并附带大量数学函数用于操作这些数组。 **主要功能:** 1. **N维数组对象(ndarray):** 类似于列表,但更加高效和强大。 2. **广播功能:** 允许对不同形状的数组进行算术运算。 3. **常用函数:** 如 `numpy.zeros`, `numpy.ones`, `numpy.arange`, `numpy.linspace` 等用于生成特定数组。 4. **线性代数、傅里叶变换、随机数生成等功能:** 提供丰富的数学工具包。 ### Matplotlib Matplotlib是一个用于创建静态、动态和交互式可视化图表的Python。它可以与NumPy紧密集成,以便于数据的快速绘图。 **主要功能:** 1. **绘制各种图表:** 如折线图、散点图、柱状图、直方图、饼图等。 2. **自定义图表:** 可以调整颜色、样式、标题、标签、图例等。 3. **动画和交互模式:** 支持生成动画图表和交互式图表。 4. **保存和输出:** 可以将图表保存为多种格式的图片文件或输出到显示器上。 ### 示例代码 以下是一个简单的例子,展示如何使用NumPy生成数据,并用Matplotlib进行可视化: ```python import numpy as np import matplotlib.pyplot as plt # 使用NumPy生成数据 x = np.linspace(0, 10, 100) # 生成0到10之间的100个等距点 y = np.sin(x) # 计算这些点的正弦值 # 使用Matplotlib绘图 plt.plot(x, y) plt.title('Sine Wave') # 添加标题 plt.xlabel('x') # x轴标签 plt.ylabel('sin(x)') # y轴标签 plt.grid(True) # 显示网格 plt.show() # 显示图表 ``` ### 相关问题: 1. 如何在NumPy中进行数组切片和索引? 2. Matplotlib中如何调整图表的样式和主题? 3. 如何使用Matplotlib创建交互式图表?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值