
机器学习实战系列
文章平均质量分 65
人工智能之浪潮
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
C#调用python脚本
在平常工程项目开发过程中常常会涉及到机器学习、深度学习算法方面的开发任务,但是受限于程序设计语言本身的应用特点,该类智能算法的开发任务常常使用Python语言开发,所以在工程实践过程中常常会遇到多平台程序部署问题。本文总结了C#调用Python程序的各种方法,希望能够给各位读者提供一定的参考。方式一:使用c#,nuget管理包上下载的ironPython安装包适用于python脚本中不包含第三方模块的情况IronPython是一种在NET和Mono上实现的 Python 语...原创 2021-08-06 11:44:18 · 6380 阅读 · 2 评论 -
TensorFlow 模型持久化
一、基本方法网上搜索tensorflow模型保存,搜到的大多是基本的方法。使用saver.save()方法保存;使用saver.restore()方法载入如 保存 代码如下import tensorflow as tf import numpy as np W = tf.Variable([[1,1,1],[2,2,2]],dtype = tf.float32,name='w') b = tf.Variable([[0,1,2]],dtype = tf.float32,name=...原创 2021-07-14 12:52:56 · 226 阅读 · 0 评论 -
TensorFlow图像处理代码汇总
1、TensorFlow图像处理函数import matplotlib.pyplot as pltimport tensorflow as tf import numpy as npimage_raw_data = tf.gfile.FastGFile("../../datasets/cat.jpg",'r').read()with tf.Session() as sess:...原创 2018-09-10 00:19:29 · 1584 阅读 · 0 评论 -
Keras模型训练过程汇总acc为0的问题
直接叙述问题,在模型训练过程中, 出现准确率为0.0000e+00 (using Keras)的情况,查找了很多原因,初步确定问题出在数据集处理不恰当,导致计算损失过程中, 要么是0,要么是1.下面贴出在 Stack Overflow上查找的可能原因:My recommendations regarding the issue:try different optimizers, f.e...原创 2018-11-11 19:57:57 · 11805 阅读 · 1 评论 -
tensorflow 与cuda、cudnn的对应版本关系
tensorflow 与cuda、cudnn的对应版本关系原创 2018-11-15 18:14:56 · 2012 阅读 · 1 评论 -
Tensorflow 读取Txt和Csv格式数据+Iris数据集CSV格式文件读取
我的数据:6.1101,17.5925.5277,9.13028.5186,13.6627.0032,11.8545.8598,6.82338.3829,11.8867.4764,4.3483若格式为txt,则先转为Csv格式:# coding=utf-8import csv#要保存后csv格式的文件名file_name_string="file.csv"with ...原创 2018-08-29 11:31:10 · 2251 阅读 · 0 评论 -
Google Colab 免费GPU服务器使用教程
官方说明Colaboratory 是一个研究项目,可免费使用。(暂不确定这个项目是不是长久有效)Colaboratory 支持 Python 2.7 和 Python 3.6。谷歌中文说明:https://colab.research.google.com/notebook以下教程基于Google浏览器(桌面版 Chrome)操作,并且使用代理访问Google。申请Colabo...原创 2018-11-15 18:39:22 · 2188 阅读 · 0 评论 -
TensorFlow图像预处理完整案例
本节,通过将训练图像进行预处理,训练得到的神经网络模型可以识别不同大小、方位、色彩等方面的实体。import tensorflow as tfimport numpy as npimport matplotlib.pyplot as plt# 随机调整图片的色彩、定义两种顺序def distort_color(image, color_ordering=0): if col...原创 2018-09-10 00:27:40 · 3774 阅读 · 0 评论 -
matplotlib平滑曲线绘制
1、问题概述在平常的绘图任务中,常常会遇到绘制折现图的情况;但是有时候为了美观或者大致了解数据的波动情况,就需要将已有的折线图修改成更加平滑的曲线。为了解决上述问题,我们首先从原理角度来介绍折现图转曲线图的相关理论。折现转曲线无非就是在已有折现图的数据基础上在各折现数据中间填充更多的样本点,这样绘制出来的折线图从视觉的角度来看,就显得更加平滑了。2、相关代码import matplo...原创 2019-12-27 17:33:47 · 7030 阅读 · 1 评论 -
matplotlib画3D图
from mpl_toolkits.mplot3d.axes3d import Axes3Dfig = plt.figure()axes3d = Axes3D(fig)axes3d.scatter3D(x,y,np.log(x+y))plt.show()原创 2019-07-09 11:54:11 · 523 阅读 · 0 评论 -
机器学习实战:出现session未清空的错误,需要清空TensorFlow的session,并重置图模型
出现session未清空的错误,需要清空TensorFlow的session,并重置图模型import tensorflow as tffrom keras import backend as K K.clear_session()tf.reset_default_graph()原创 2019-05-22 13:28:30 · 3531 阅读 · 0 评论 -
Python中调用其他执行代码
os.system() 和 os.popen()1.os.popen(command[,mode[,bufsize]])os.system(command)2.os.popen() 功能强于os.system() , os.popen() 可以返回回显的内容,以文件描述符返回。eg:t_f = os.popen ("ping 192.168.1.1")print t_f...原创 2019-05-10 11:49:49 · 726 阅读 · 0 评论 -
变分自编码器VAE代码篇
VAE非常适合用于学习具有良好结构的潜在空间,其中特定方向表示数据中有意义的变化轴;VAE的工作原理:(1)一个编码器模块将输入样本input_img转换为表示潜在空间中的两个参数z_mean和z_log_variance;(2)我们假定潜在正态分布能够生成输入图像,并从这个分布中随机采样一个点:z=z_mean + exp(z_log_variance)*epsilon,其中eps...原创 2019-03-22 16:44:34 · 2412 阅读 · 1 评论 -
机器学习实战篇:使用机器学习在线算法与外存学习进行情感分析
1、简介情感分析又称为观点挖掘,是NLP领域一个非常流行的分支;它分析的是文档的情感倾向。本节将使用互联网电影数据库(IMDb)中大量的电影评论数据进行试验验证。该数据集包含5万条关于电影的评论。数据集下载地址:http://ai.stanford.edu/~amaas/data/sentiment2、使用方法本文使用HashingVectorizer以及SGDClassifier进行...原创 2019-03-08 12:35:03 · 420 阅读 · 0 评论 -
机器学习实战系列:sklearn 中模型保存的两种方法
一、 sklearn中提供了高效的模型持久化模块joblib,将模型保存至硬盘。from sklearn.externals import joblib#lr是一个LogisticRegression模型joblib.dump(lr, 'lr.model')lr = joblib.load('lr.model')链接:https://www.zhihu.com/question/2...转载 2018-10-09 18:35:03 · 3676 阅读 · 2 评论 -
机器学习:样本去中心化目的
在回归问题和一些机器学习算法中,以及训练神经网络的过程中,通常需要对原始数据进行中心化(Zero-centered或者Mean-subtraction)处理和标准化(Standardization或Normalization)处理。目的:通过中心化和标准化处理,得到均值为0,标准差为1的服从标准正态分布的数据。 计算过程由下式表示: 下面解释一下为什么需要使用这些数据预处理步骤。在一些实...原创 2018-11-09 11:12:56 · 2610 阅读 · 0 评论 -
机器学习算法实战案例
1、svm算法 from sklearn.svm import SVC svm = SVC(kernel='rbf', random_state=0, gamma=0.2, C=1.0) svm.fit(featureListArray) pred = svm.predict(featureListArray) print(pred)2、KMeans...原创 2018-11-16 20:24:26 · 1752 阅读 · 0 评论 -
python将nan, inf转为特定的数字
在有些机器学习和神经网络模型训练过程中,可能会遇到原始数据集经过预处理后,数据中包含Nan、Inf等占位符,导致模型训练损失函数计算出现偏差,最终导致模型准确率低的问题。所以需要在预处理阶段,将该部分数据进行处理操作,常见操作为数据标准化处理后用0代替, 另一种方法是利用插值方法进行数据填充。本部分只讲解0填充方法。代码:import numpy as npa = np.arra...原创 2018-11-12 12:58:07 · 1469 阅读 · 0 评论 -
线性回归及RANSAC异常值清除算法案例
线性回归及RANSAC异常值清除算法案例1、常规线性回归import matplotlib.pyplot as pltimport seaborn as snsimport pandas as pdimport numpy as npfrom sklearn.linear_model import LinearRegressionfrom sklearn.linear_mode...原创 2018-11-20 12:46:51 · 6152 阅读 · 1 评论 -
线性回归模型的性能评价指标
本节讨论下线性回归模型的性能评价指标对于机器学习的两个基本问题分类和回归的评价方式有所不同,分类问题一般通过分类准确率、召回率、F1值、ROC/AUC等手段进行模型的评估。对于回归问题,该如何评价? 这里简要列举部分评估方法。1、残差估计总体思想是计算实际值与预测值间的差值简称残差。从而实现对回归模型的评估,一般可以画出残差图,进行分析评估、估计模型的异常值、同时还可以检查模型是否是...原创 2018-11-20 14:09:09 · 13152 阅读 · 0 评论 -
python实现并绘制 sigmoid函数,tanh函数,ReLU函数,PReLU函数
python实现并绘制 sigmoid函数,tanh函数,ReLU函数,PReLU函数# -*- coding:utf-8 -*-from matplotlib import pyplot as pltimport numpy as npimport mpl_toolkits.axisartist as axisartist def sigmoid(x): return...原创 2018-12-21 10:32:37 · 11259 阅读 · 11 评论 -
sklearn中异常检测算法建模汇总
借鉴于http://scikit-learn.org/stable/modules/outlier_detection.html#novelty-and-outlier-detection一、概况两大异常novelty detection这些训练数据没有被异常值所污染,我们有兴趣在新的观测中发现异常。outlier detection训练数据中包含异常值,和我们需要合适的训...原创 2018-12-22 18:34:33 · 2501 阅读 · 0 评论 -
机器学习实战篇:线性回归及多项式回归实现波士顿房价预测并评估模型
1、简介本文使用传统机器学习算法线性回归及多项式回归实现波士顿房价数据集预测并评估两种模型2、使用方法线性回归、多项式回归、均方误差评估、决定系数评估3、代码实现import matplotlib.pyplot as pltimport pandas as pdfrom sklearn.linear_model import LinearRegressionfrom s...原创 2019-03-09 17:53:12 · 7282 阅读 · 1 评论 -
机器学习实战篇:使用贝叶斯模型对鸢尾花数据集分类
1、简介本文主要讲解朴素贝叶斯及其推理,并实现鸢尾花数据的分类问题2、算法解释朴素贝叶斯最初来源于统计科学领域。根据朴素贝叶斯公式:由于类似然涉及到多个特征的组合求解较为困难。所以为了简化运算,降低计算复杂度,我们假设每个特征具备统计独立性,即特征间不存在关联性。这样就可以简化上述贝叶斯公式为:上述公式即为朴素贝叶斯通用公式,我们进一步化简去除无关证据项得:根据...原创 2019-03-11 12:04:09 · 8150 阅读 · 2 评论 -
机器学习实战篇:利用LDA模型进行主题分析
1、简介本文讲解利用LDA模型,建立一个主题分析模型案例。LDA具体内容请读者参考其他资料。2、案例### 案例通过对自己造的5个文档进行LDA建模,这里主题数量为3个。具体如下:# from nltk import stopwordsimport nltk# nltk.download()from nltk.corpus import stopwordsfrom nlt...原创 2019-03-11 14:02:44 · 4742 阅读 · 0 评论 -
机器学习实战篇:Python爬取豆瓣评分并使用wordCloud词云库展示
1、简介Python爬取豆瓣评分并使用wordCloud词云库展示2、库说明wordCloud词云绘图库参数简介:Parameters| ----------| font_path : string| 使用的字体库| width : int (default=400)| 图片宽度| height : int (default=2...原创 2019-03-12 13:03:09 · 598 阅读 · 0 评论 -
机器学习实战篇:使用机器学习算法逻辑回归进行情感分析
本节将讨论使用机器学习进行情感分析并给出代码实现。1、简介情感分析又称为观点挖掘,是NLP领域一个非常流行的分支;它分析的是文档的情感倾向。本节将使用互联网电影数据库(IMDb)中大量的电影评论数据进行试验验证。该数据集包含5万条关于电影的评论。数据集下载地址:http://ai.stanford.edu/~amaas/data/sentiment2、使用方法本文使用的向量量化...原创 2019-03-08 12:28:05 · 4334 阅读 · 1 评论 -
python中常用的九种预处理方法
本文总结的是我们大家在python中常见的数据预处理方法,以下通过sklearn的preprocessing模块来介绍;1. 标准化(Standardization or Mean Removal and Variance Scaling)变换后各维特征有0均值,单位方差。也叫z-score规范化(零均值规范化)。计算方式是将特征值减去均值,除以标准差。? 1 ...原创 2018-10-13 16:22:49 · 777 阅读 · 0 评论