这是一篇RAG领域的文章,原文在这:https://aclanthology.org/2023.emnlp-main.398.pdf
时间 | [Submitted on 24 May 2023 (v1), last revised 31 Oct 2023 (this version, v2)] |
背景 | LLM在信息搜索、生成带引用的文本时存在幻觉问题,即事实准确性有待提升,而且用户难以验证准确性。 |
现有工作的不足 | 人工评估或商用搜索引擎,难以复现和比较不同模型 |
解决 | 提出Automatic LLM Citation Evalutation 自动化评估模型检索生成能力 |
创新点 | 1. 评估长文本生成 2. 自动评估引用质量 3. 允许为一个陈述引用多篇文章 |
具体工作内容:
数据集
有三个数据集,分别是