LLM论文:ALCE (Enabling Large Language Models to Generate Text with Citations)

本文探讨了在RAG领域中,如何通过ALCE评估模型解决大语言模型在信息搜索和生成带引用文本时的事实准确性问题。模型强调了对长文本生成、正确性和引用质量的自动评估,并区分了vanilla、inlinesearch和closebook三种检索生成方式。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

这是一篇RAG领域的文章,原文在这:https://aclanthology.org/2023.emnlp-main.398.pdf

时间 [Submitted on 24 May 2023 (v1), last revised 31 Oct 2023 (this version, v2)]
背景 LLM在信息搜索、生成带引用的文本时存在幻觉问题,即事实准确性有待提升,而且用户难以验证准确性。
现有工作的不足 人工评估或商用搜索引擎,难以复现和比较不同模型
解决 提出Automatic LLM Citation Evalutation 自动化评估模型检索生成能力
创新点

1. 评估长文本生成

2. 自动评估引用质量

3. 允许为一个陈述引用多篇文章

具体工作内容:

数据集

有三个数据集,分别是

### DeepSeek LLM及其长期主义扩展开源语言模型的最佳实践 #### 概述 DeepSeek作为一个致力于开发先进的人工智能解决方案的企业,其大型语言模型LLM)旨在通过创新的技术手段实现更高效、更具影响力的自然语言处理能力。为了推动这一目标,在实践中采用了多种策略和技术来优化和扩展开源语言模型。 #### 长期主义视角下的模型扩展方法 对于希望采用长期主义原则扩展开源语言模型的研究者而言,可以借鉴如下几种方式: - **持续的数据更新机制**:保持训练语料库的新鲜度至关重要。定期引入新的高质量数据集有助于提升模型的理解能力和表达多样性[^4]。 - **模块化架构设计**:构建易于维护升级的系统结构,使得各个组件之间解耦合良好,便于单独迭代改进不同部分而不影响整体稳定性[^2]。 - **社区驱动的发展模式**:鼓励全球范围内的贡献者参与进来共同完善项目生态;这不仅限于代码层面还包括文档编写、测试反馈等方面的工作[^1]。 #### 实施细节与最佳实践建议 当具体实施上述理念时,应考虑以下几个方面: - **资源分配规划**:合理安排计算资源用于实验探索与生产部署之间的平衡;优先支持那些具有潜力带来显著收益的方向进行深入研究[^3]。 - **性能监控体系建立**:设立完善的指标跟踪框架以便及时发现潜在瓶颈所在,并据此调整算法参数或硬件配置以求得最优性价比表现。 - **安全性和隐私保护措施加强**:随着模型规模不断扩大,确保用户信息安全成为不可忽视的任务之一。采取加密传输协议、匿名化处理敏感信息等手段有效降低风险隐患。 ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer def load_model(model_name="deepseek/llm"): tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) return model, tokenizer model, tokenizer = load_model() print("Model loaded successfully.") ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

__心似大海__

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值