目录
Flink其他文章请点击:
Flink实战教程从入门到精通(基础篇)(一)Flink简介-CSDN博客
Flink实战教程从入门到精通(基础篇)(二)Flink快速上手_flink菜鸟教程-CSDN博客
Flink实战教程从入门到精通(基础篇)(三)Flink集群部署_flink集群搭建步骤-CSDN博客
Flink实战教程从入门到精通(基础篇)(四)Flink部署-Standalone运行模式_flink教程菜鸟教程-CSDN博客
Hadoop集群搭建(hdfs、yarn)_hadoop yarn 集群-CSDN博客
Flink实战教程从入门到精通(基础篇)(五)Flink部署-YARN运行模式_flink 1.17.1 yarn模式执行都需要哪些jar包-CSDN博客
一、系统架构
Flink运行时架构,我们就以Standalone的会话模式为例
1、作业管理器(JobManager)
JobManager是一个Flink集群中任务管理和调度的核心,是控制应用执行的主进程。也就是说,每个应用都应该被唯一的JobManager所控制执行。
JobManger又包含3个不同的组件。
(1)JobMaster
JobMaster是JobManager中最核心的组件,负责处理单独的作业(Job)。所以JobMaster和具体的作业(Job)是一 一对应的,多个Job可以同时运行在一个Flink集群中, 每个Job都有一个自己的JobMaster。
在作业提交时,JobMaster会先接收到要执行的应用。JobMaster会向资源管理器(ResourceManager)发出请求,申请执行任务必要的资源。一旦它获取到了足够的资源,就会将执行图分发到真正运行它们的TaskManager上。
而在运行过程中,JobMaster会负责所有需要中央协调的操作,比如说检查点(checkpoints)的协调。
(2)资源管理器(ResourceManager)
ResourceManager主要负责资源的分配和管理,在Flink 集群中只有一个。所谓“资源”,主要是指TaskManager的任务槽(task slots)。任务槽就是Flink集群中的资源调配单元,包含了机器用来执行计算的一组CPU和内存资源。每一个任务(Task)都需要分配到一个slot上执行。
这里注意要把Flink内置的ResourceManager和其他资源管理平台(比如YARN)的ResourceManager区分开。
(3)分发器(Dispatcher)
Dispatcher主要负责提供一个REST接口,用来提交应用,并且负责为每一个新提交的作业启动一个新的JobMaster 组件。Dispatcher也会启动一个Web UI,用来方便地展示和监控作业执行的信息。
2、任务管理器(TaskManager)
TaskManager是Flink中的工作进程,数据流的具体计算就是它来做的。 Flink集群中必须至少有一个TaskManager;每一个TaskManager都包含了一定数量的任务槽(task slots)。Slot是资源调度的最小单位,slot的数量限制了TaskManager能够并行处理的任务数量。
启动之后,TaskManager会向资源管理器注册它的slots;收到资源管理器的指令后,TaskManager就会将一个或者多个槽位提供给JobMaster调用,JobMaster就可以分配任务来执行了。
二、核心概念
1、并行度
(1)并行子任务和并行度
当要处理的数据量非常大时,我们可以把一个算子操作,“复制”多份到多个节点,数据来了之后就可以到其中任意一个执行。这样一来,一个算子任务就被拆分成了多个并行的“子任务”(subtasks),再将它们分发到不同节点,就真正实现了并行计算。
在Flink执行过程中,每一个算子(operator)可以包含一个或多个子任务(operator subtask),这些子任务在不同的线程、不同的物理机或不同的容器中完全独立地执行。
一个特定算子的子任务(subtask)的个数被称之为其并行度(parallelism)。这样,包含并行子任务的数据流,就是并行数据流,它需要多个分区(stream partition)来分配并行任务。一般情况下,一个流程序的并行度,可以认为就是其所有算子中最大的并行度。一个程序中,不同的算子可能具有不同的并行度。
例如:如上图所示,当前数据流中有source、map、window、sink四个算子,其中sink算子的并行度为1,其他算子的并行度都为2。所以这段流处理程序的并行度就是2。
(2)并行度的设置
1)代码中设置
我们在代码中,可以很简单地在算子后跟着调用setParallelism()方法,来设置当前算子的并行度:
stream.map(word -> Tuple2.of(word, 1L)).setParallelism(2);
这种方式设置的并行度,只针对当前算子有效。
另外,我们也可以直接调用执行环境的setParallelism()方法,全局设定并行度:
env.setParallelism(2);
这样代码中所有算子,默认的并行度就都为2了。我们一般不会在程序中设置全局并行度,因为如果在程序中对全局并行度进行硬编码,会导致无法动态扩容。
这里要注意的是,由于keyBy不是算子,所以无法对keyBy设置并行度。
2)提交应用时设置
在使用flink run命令提交应用时,可以增加-p参数来指定当前应用程序执行的并行度,它的作用类似于执行环境的全局设置:
bin/flink run –p 2 –c com.atguigu.wc.SocketStreamWordCount
./FlinkTutorial-1.0-SNAPSHOT.jar
如果我们直接在Web UI上提交作业,也可以在对应输入框中直接添加并行度。
3)配置文件中设置
我们还可以直接在集群的配置文件flink-conf.yaml中直接更改默认并行度:
parallelism.default: 2
这个设置对于整个集群上提交的所有作业有效,初始值为1。无论在代码中设置、还是提交时的-p参数,都不是必须的;所以在没有指定并行度的时候,就会采用配置文件中的集群默认并行度。在开发环境中,没有配置文件,默认并行度就是当前机器的CPU核心数。
需要注意的是,如果修改配置文件的并行度,需要重启集群,因为集群启动时读取一次配置文件。
总结:并行度的优先级
代码:算子并行度 > 代码:env全局并行度 > 提交时指定并行度 > 配置文件设置的并行度
2、算子链
(1)算子间的数据传输
一个数据流在算子之间传输数据的形式可以是一对一(one-to-one)的直通(forwarding)模式,也可以是打乱的重分区(redistributing)模式,具体是哪一种形式,取决于算子的种类。
1)一对一(One-to-one,forwarding)
这种模式下,数据流维护着分区以及元素的顺序。比如图中的source和map算子,source算子读取数据之后,可以直接发送给map算子做处理,它们之间不需要重新分区,也不需要调整数据的顺序。这就意味着map 算子的子任务,看到的元素个数和顺序跟source 算子的子任务产生的完全一样,保证着“一对一”的关系。map、filter、flatMap等算子都是这种one-to-one的对应关系。这种关系类似于Spark中的窄依赖。
2)重分区(Redistributing)
在这种模式下,数据流的分区会发生改变。比如图中的map和后面的keyBy/window算子之间,以及keyBy/window算子和Sink算子之间,都是这样的关系。
每一个算子的子任务,会根据数据传输的策略,把数据发送到不同的下游目标任务。这些传输方式都会引起重分区的过程,这一过程类似于Spark中的shuffle。
除了forward,其他的都是重分区。
(2)合并算子链
在Flink中,并行度相同的一对一(one to one)算子操作,可以直接链接在一起形成一个“大”的任务(task),这样原来的算子就成为了真正任务里的一部分,如下图所示。每个task会被一个线程执行。这样的技术被称为“算子链”(Operator Chain)。
上图中Source和map之间满足了算子链的要求,所以可以直接合并在一起,形成了一个任务;因为并行度为2,所以合并后的任务也有两个并行子任务。这样,这个数据流图所表示的作业最终会有5个任务,由5个线程并行执行。
还是上图,再没有算子链之前,source有两个子任务,map也有俩个子任务,总共是4个子任务,当有了算子链以后,source和map合并再一起,那么现在就只有俩个子任务了。
将算子链接成task是非常有效的优化:可以减少线程之间的切换和基于缓存区的数据交换,在减少时延的同时提升吞吐量。
Flink默认会按照算子链的原则进行链接合并,如果我们想要禁止合并或者自行定义,也可以在代码中对算子做一些特定的设置:
// 禁用算子链 该算子前后不进行算子链
.map(word -> Tuple2.of(word, 1L)).disableChaining();
// 从当前算子开始新链
.map(word -> Tuple2.of(word, 1L)).startNewChain()
一般情况下不会禁用算子链,除非俩个算子合并再一起,特别重,需要分开,才使用禁用算子链。
3、任务槽(Task Slots)
(1)任务槽(Task Slots)
Flink中每一个TaskManager都是一个JVM进程,它可以启动多个独立的线程,来并行执行多个子任务(subtask)。
很显然,TaskManager的计算资源是有限的,并行的任务越多,每个线程的资源就会越少。那一个TaskManager到底能并行处理多少个任务呢?为了控制并发量,我们需要在TaskManager上对每个任务运行所占用的资源做出明确的划分,这就是所谓的任务槽(task slots)。
每个任务槽(task slot)其实表示了TaskManager拥有计算资源的一个固定大小的子集。这些资源就是用来独立执行一个子任务的。
假设一个TaskManager有三个slot,那么他会将管理的内存平均分成三份,每个slot独自占据一份,这样一来我们在slot上执行一个子任务时,相当与划定了一块专用内存,就不需要和来自其他作业的任务去竞争内存资源了。
(2)任务槽数量的设置
在Flink的/opt/module/flink-1.17.0/conf/flink-conf.yaml配置文件中,可以设置TaskManager的slot数量,默认是1个slot。
taskmanager.numberOfTaskSlots: 8
需要注意的是,slot目前仅仅用来隔离内存,不会涉及CPU的隔离。在具体应用时,可以将slot数量配置为机器的CPU核心数,尽量避免不同任务之间对CPU的竞争。这也是开发环境默认并行度设为机器CPU数量的原因。
总结:
隔离内存,均分内存,不隔离cpu,cpu共享
(3)任务对任务槽的共享
如果一个job中的算子都不相同,则可以所有算子共享一个slot。
默认情况下,Flink是允许子任务共享slot的。如果我们保持sink任务并行度为1不变,而作业提交时设置全局并行度为6,那么前两个任务节点就会各自有6个并行子任务,整个流处理程序则有13个子任务。如上图所示,只要属于同一个作业,那么对于不同任务节点(算子)的并行子任务,就可以放到同一个slot上执行。所以对于第一个任务节点source→map,它的6个并行子任务必须分到不同的slot上,而第二个任务节点keyBy/window/apply的并行子任务却可以和第一个任务节点共享slot。
当我们将资源密集型和非密集型的任务同时放到一个slot中,它们就可以自行分配对资源占用的比例,从而保证最重的活平均分配给所有的TaskManager。
slot共享另一个好处就是允许我们保存完整的作业管道。这样一来,即使某个TaskManager出现故障宕机,其他节点也可以完全不受影响,作业的任务可以继续执行。
当然,Flink默认是允许slot共享的,如果希望某个算子对应的任务完全独占一个slot,或者只有某一部分算子共享slot,我们也可以通过设置“slot共享组”手动指定:
.map(word -> Tuple2.of(word, 1L)).slotSharingGroup("1");
这样,只有属于同一个slot共享组的子任务,才会开启slot共享;不同组之间的任务是完全隔离的,必须分配到不同的slot上。在这种场景下,总共需要的slot数量,就是各个slot共享组最大并行度的总和。
4、 任务槽和并行度的关系
任务槽和并行度都跟程序的并行执行有关,但两者是完全不同的概念。简单来说任务槽是静态的概念,是指TaskManager具有的并发执行能力,可以通过参数taskmanager.numberOfTaskSlots进行配置;而并行度是动态概念,也就是TaskManager运行程序时实际使用的并发能力,可以通过参数parallelism.default进行配置。
举例说明:假设一共有3个TaskManager,每一个TaskManager中的slot数量设置为3个,那么一共有9个task slot,表示集群最多能并行执行9个同一算子的子任务。
而我们定义word count程序的处理操作是四个转换算子:
source→ flatmap→ reduce→ sink
当所有算子并行度相同时,容易看出source和flatmap可以合并算子链,于是最终有三个任务节点。
任务槽和并行度的关系(一)
任务槽和并行度的关系(2)
任务槽和并行度的关系(3)
任务槽和并行度的关系(4)
通过这个例子也可以明确地看到,整个流处理程序的并行度,就应该是所有算子并行度中最大的那个,这代表了运行程序需要的slot数量。
slot与并行度的关系
(1)slot 是一种静态的概念,表示最大的并发上限。并行度是一种动态的概念,表示 实际运行 占了 几个。
(2)要求:slot的数量 >= job并行度(算子最大的并行度),job才能运行。
注意:如果是YARN模式,则进行动态申请,比如session:刚开始0个Taskmanager,0个slot
---》提交一个job并行度是10,YARN则会给每个Taskmanager开通4个slot,然后使用10个剩余两个。