- 博客(11)
- 收藏
- 关注
原创 人工智能的理论性研究首先要解决人工智能的等级界线。
目前人工智能没有统一的标准,大家都在一股脑的投入研究,但从来没有听到有一个统一的标准,在这个前提下人工智能的研究使用可以说是百花齐放百家争鸣,乱的没啥秩序,这是一种相当内耗的事,国家也没有那个机构出来进行引导,不过我觉得学术界跟企业技术人员应该在人工智能论坛的基础上简单的统一一个标准,这是一个只看结果的标准。所以为了以后更好的有序的发展建立一套先松散的管理机制。随着需求逐步法律化,比如无人机刚开始的无序发展,到现在的立法管理。等级划分由各学术团体,企业技术人员选出委员会,讨论定制,根据发展,阶段性调整。
2025-08-01 10:49:23
249
原创 智能水平跟能量的关系
在自然界动物,植物的智能高低跟能量获得的多少是成正比的,比如植物能获得的土壤养分跟光照就决定了他们的智力,正因为所获能量有限所以植物的智能才是最低的,不没说没有,比如美国红杉树,澳大利亚桉树,巴拿马香豆树,这些树木都具有引雷的能力,引雷是为了引发大火消灭自己周围的植物,也就是一种策略,还有很多类似例子都说明植物的智能,但是智能水平较低那是跟能量获得有关系的。总结,从生物进化的高低跟智能的高低始终跟能量的获取能力有关,而且相互支持跟相互制约,有大量能量保证的智力水平就高。没有大量能量保证的智力水平就低。
2025-07-24 07:33:47
110
原创 如何安全使用人工智能大模型
4.要开始新项目就从新部署,这样做的目的是你不用训练又安全。所以我用时就断网,等用完了就清除,需要用就从新部署,是人家拿计算中心训练好的。人工智能大模型的安全漏洞在推送,你只要有不一样的解决方案他就会通过学习学会,在别人讨论相同问题时,就会作为解决问题的推荐方案。1.绝对本地部署,就是部署好以后断网,因为你使用时他还是会手机数据往后台传送,我本地部署的大模型在推理时看性能,网络也是有数据流的。总之他们怎么设置安全模式都是徒劳,底层逻辑就有安全隐患,你的想法告诉大模型,他认为好的就推送出去了。
2025-07-22 07:32:11
325
原创 慎用网络上的人工智能app
人工智能确实方便,可以天马行空的畅享,无所顾忌的瞎聊但有些技术突破就是在胡思乱想中,找到灵感。可问题是这些ai后台是不透明的,你在这里所有的思考问题的内容都是无法保证安全的,我好像没听说那家ai宣布数据绝对安全的,你们的心血有可能成为别人的。那些无关紧要的倒无所谓。有些有价值的设想还是很重要的。如果你是一个技术达人,在展开技术分析时,慎用网络人工智能ai,泄密的可能可以说非常高。最好本地部署,而且不插网线的那种。我一直担心的事还是发生了。英雄所见略同是真的吗?
2025-07-21 07:07:59
354
1
原创 用ollama本地部署deepseek-coder33b,然后用cherry studio窗口调用
第三步,安装cherry studio,安装好后打开。点左下角设置,在模型服务里选ollama,点添加,模型id需要在命令行输入ollama list查询到id号,跟模型名称就可以了,然后点添加他就添加好了。回到起始页面中间最上面有个选择框在里面选择deepseek-coder:33b就可以了。第二步,按win+r,在命令行输入cmd回车,在命令提示符输入:ollama run deepseek-coder:33b回车。等安装完出现提问就安装好了。第一步,在ollama官网下载ollama安装包,安装。
2025-07-11 09:18:40
713
原创 硅基智能自主实现的模拟实验(3)
把机器蜘蛛的软件分成两个部分,继承的遗传功能函数跟本来的基础函数分开存储,开发能根据函数恢复程序的功能(只需要基本能实现,不需要多强)恢复到什么程度不要求,就是有这么一个机制,这是这个实验的关键,然后我们需要设置能够部分破坏机器蜘蛛的存储器,基本功能破坏小一些,遗传部分可以破坏多一些,但是自我修复的功能部分不能受损。然后两只蜘蛛都需要损坏但损坏的成度不同,然后观察自我修复的成度,以及后续应对新事物的自我学习能力。并且人为提高自主修复能力。看自我修复的新的程序跟人编写的程序有啥不同,在应对新事物时能力如何。
2025-07-02 14:57:44
201
原创 规则书在自动驾驶中的作用
规则库在plc中还在应用,来实现精准控制机器生产产品,使合格率很高,正因为有清晰的边界,致使机器操作精准,虽然自动辅助驾驶用大模型可以更接近人类的操作,但大模型没有安全意识,没有责任心,所以我们不能把危险时刻的最后几秒把方向盘交给大模型,我们要用清晰明确的规则书来为自动辅助兜底,守住底线。现在车真能上树,车能进屋,哎车真能进屋)所以责任重大,而大模型不具备边界清晰的控制,所以我们必须用规则库来做最后的底线。来为这样一场科技盛宴兜底。比如第一条不能闯红灯。规则库的好处就是设立底线,在危险时刻做好最后的守护。
2025-07-01 17:59:17
433
原创 硅基智能自主实现的模拟实验(2)
还要加入一个狐狸,狐狸的主要目标是兔子,只有兔子吃草的时间段狐狸才会出现,因为狐狸要追兔子,兔子跑的方向是随机的,如果碰到蜘蛛,狐狸会先吃蜘蛛(蜘蛛跑的比兔子慢)然后再去追兔子,所以蜘蛛又要加入躲避狐狸,天敌的意识(函数)有三种目标,另一只蜘蛛需要赶走,兔子早期躲避,后期不躲避,互不干扰,但有一个风险兔子意味着狐狸。最后要加入一只鸟,这只鸟有时候能看到狐狸,看到就报警,这个报警两只蜘蛛,兔子,狐狸都能“听”到,然后兔子回洞当然要区分方向,如果听不到狐狸会偷摸靠近,但靠的到兔子,蜘蛛能看到还是要跑的。
2025-07-01 16:33:51
210
原创 硅基智能自主实现的模拟实验
在一个平面用画得标记来让机器蜘蛛识别区域,比如自己的洞穴,当电量高时可以在洞穴里休眠,减少耗电,当电量低于百分之五十,就要出去捕食(充电),另一个机器蜘蛛相同,相互遇到会打架,赶走另一只,能量少的败,然后另找地方充电。两只蜘蛛智能跟蜘蛛一样,但是预留记忆空间,设计处理问题的能力,目的是通过竞争,通过捕食(充电)来刺激这套非智能体,在预设的能力,在外界刺激下是否会生成自主处理问题的机能。| 能量获取 | 光伏板+电流计 | 当电量<20%时,沿光照梯度移动直至充电完成 | 蜘蛛捕食 |
2025-06-28 11:30:01
291
1
原创 状态机是人工智能很重要的组成部分
动作定义在具体的状态类中。使用专门的状态机库/框架:许多语言或领域有专门的库(如Boost.Statechart, Stateflow (MATLAB/Simulink), Akka FSM, XState (JS)),提供更高级的建模、可视化、调试支持。3. 动作:在进入某个状态、离开某个状态或在转移过程中可能执行的操作(例如:发送消息、打开阀门、更新显示、播放音效)。最著名的例子:图灵机。游戏开发: 角色AI(行为状态:巡逻、追击、攻击、逃跑)、游戏流程管理(菜单、游戏中、暂停、结束)、动画状态切换。
2025-06-24 19:45:47
451
1
原创 规则书是人类智慧跟人工智能混合应用的基石
规则书完美地体现了“混合智能”的核心思想——因为规则书让机器做它擅长的(高效执行明确规则),让人做他擅长的(制定规则、理解情境、处理例外、做出判断)。一旦规则被清晰定义(通常是 `IF-THEN` 语句或其更复杂的逻辑组合),AI系统(规则引擎)就能以“极高的速度、不知疲倦地、完全一致地”应用这些规则处理海量数据或请求。难以处理高度模糊、不确定、依赖上下文的情境:对于需要“领悟”、“变通”、“察言观色”的场景(如复杂的谈判、创意设计、理解微妙的情感),纯粹的规则系统往往力不从心。
2025-06-10 11:58:52
422
1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人