DFS与BFS算法讲解

DFS

深度优先遍历简称DFS,是针对图和树的遍历算法。利用深度优先算法可以产生目标图的相应拓扑排序表,利用拓扑排序表可以方便的解决很多相关的图论问题,比如最大路径问题等。
一般用堆或栈来实现。
过程:对每一个可能的分支路径深入到不能再深入为止,如果遇到死路就往回走,往回走的过程中遇到没访问过的节点就进入该节点继续深入,每个节点只能访问一次。
应用:先序遍历、中序遍历、后序遍历
模型:

void dfs(int step){
	判断边界
	尝试每一种可能 for(i=1;i<=n;i++){
		继续下一步 dfs(step+1)
		}
	返回
}

BFS

广度优先遍历简称BFS,是连通图的一种遍历算法。Dijkstra单源最短路径算法和Prim最小生成树算法都采用了和广度优先遍历类似的思想。
一般用队列来实现。
过程:从根结点开始,沿着树/图的宽度遍历树/图的节点,如果所有的节点都被访问,那么算法终止。
应用:层序遍历、最短路径、求二叉树的最大高度、由点到面遍历图、拓扑排序
代码实现:

while queue 不空:
    cur = queue.pop()
    for 节点 in cur的所有相邻节点:
        if 该节点有效且未访问过:
            queue.push(该节点)
### DFSBFS 算法的中英文双语讲解 #### 深度优先搜索(Depth-First Search,DFS深度优先搜索是一种用于遍历或搜索树或图的算法。其核心思想是从起始节点开始,沿着某个方向一直深入,直到无法继续为止,然后回溯到上一个节点并重复这一过程[^1]。 在中文中,深度优先搜索被称为“深度优先遍历”或“深度优先搜索”。它通过递归或栈来实现。以下是使用递归实现 DFS 的 Python 示例代码: ```python def dfs(graph, node, visited): if node not in visited: visited.add(node) print(node, end=" ") # 访问节点 for neighbor in graph[node]: dfs(graph, neighbor, visited) # 示例图结构 graph = { 'A': ['B', 'C'], 'B': ['A', 'D', 'E'], 'C': ['A', 'F'], 'D': ['B'], 'E': ['B', 'F'], 'F': ['C', 'E'] } visited = set() print("DFS Traversal:") dfs(graph, 'A', visited) ``` In English, Depth-First Search (DFS) is a technique that explores as far as possible along each branch before backtracking. It can be implemented using recursion or an explicit stack data structure[^2]. #### 广度优先搜索(Breadth-First Search,BFS) 广度优先搜索是一种用于遍历或搜索树或图的算法。其核心思想是按照层次顺序访问所有节点,即从起始节点开始,先访问其所有邻居节点,然后再访问下一层的节点[^3]。 在中文中,广度优先搜索被称为“广度优先遍历”或“广度优先搜索”。它通常通过队列来实现。以下是使用队列实现 BFS 的 Python 示例代码: ```python from collections import deque def bfs(graph, start): visited = set() queue = deque([start]) visited.add(start) while queue: node = queue.popleft() print(node, end=" ") # 访问节点 for neighbor in graph[node]: if neighbor not in visited: visited.add(neighbor) queue.append(neighbor) # 示例图结构 graph = { 'A': ['B', 'C'], 'B': ['D', 'E'], 'C': ['F'], 'D': [], 'E': ['F'], 'F': [] } print("\nBFS Traversal:") bfs(graph, 'A') ``` In English, Breadth-First Search (BFS) explores all the neighbors of a node at the current depth level before moving on to nodes at the next depth level. It is typically implemented using a queue data structure[^4]. ### 总结 - **DFS** 使用递归或栈进行实现,适合查找路径或检测连通性。 - **BFS** 使用队列进行实现,适合寻找最短路径或计算距离。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值