PyTorch ------MaxPool池化ceil_mode使用

PyTorch的_MaxPoolNd类是MaxPool1d、MaxPool2d和MaxPool3d的基类,其中的ceil_mode属性在输入尺寸为奇数时影响输出大小。当ceil_mode设为True,它会使输出尺寸向上取整,而False则向下取整,类似于math库中的ceil和floor函数。此特性在构建神经网络池化层时尤为关键。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Pytorch _MaxPoolNd类

  • 这个类见的少,但是MaxPool1d、MaxPool2d、MaxPool3d应该很常见了.
  • 在源码中MaxPool1d、MaxPool2d、MaxPool3d 这三类都是继承 _MaxPoolNd这个基类的
  • 在这里插入图片描述
  • 在这里插入图片描述
  • 在这里插入图片描述
  • 源码截图
  • 基类_MaxPoolNd中存在一个属性ceil_mode
  • 在这里插入图片描述
  • 这个属性在Input size 为偶数的时候,没有影响,但是当Input size 为奇数时output size 就不一样了,ceil_model = True 和false 是不同的结果
  • 在这里插入图片描述
  • 下面用代码来展示其结果
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值